Abstract
This article is devoted to investigate some dynamical properties of a structured population dynamic model with random walk on (0,+∞). This model has a nonlinear and nonlocal boundary condition. We reformulate the problem as an abstract non-densely defined Cauchy problem, and use integrated semigroup theory to study such a partial differential equation. Moreover, a Hopf bifurcation theorem is given for this model.
Similar content being viewed by others
References
Ackleh, A.S., Deng, K.: A nonautonomous juvenile-adult model: Well-posedness and long-time behavior via a comparison principle. SIAM J. Appl. Math. 69, 1644–1661 (2009)
Amann, H.: Hopf bifurcation in quasilinear reaction-diffusion systems. In: Busenberg, S.N., Martelli, M. (eds.) Delay Differential Equations and Dynamical Systems. Lect. Notes Math., vol. 1475, pp. 53–63. Springer, Berlin (1991)
Arendt, W.: Vector valued Laplace transforms and Cauchy problems. Isr. J. Math. 59, 327–352 (1987)
Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Birkhäuser, Basel (2001)
Arino, O.: A survey of structured cell population dynamics. Acta Biotheor. 43, 3–25 (1995)
Arino, O., Sanchez, E.: A survey of cell population dynamics. J. Theor. Med. 1, 35–51 (1997)
Bellomo, N., Bellouquid, A., Nieto, J., Soler, J.: Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems. Math. Models Methods Appl. Sci. 20, 1179–1207 (2010)
Bertoni, S.: Periodic solutions for non-linear equations of structure populations. J. Math. Anal. Appl. 220, 250–267 (1998)
Calsina, A., Ripoll, J.: Hopf bifurcation in a structured population model for the sexual phase of monogonont rotifers. J. Math. Biol. 45, 22–33 (2002)
Calsina, A., Saldana, J.: Global dynamics and optimal life history of a structured population model. SIAM J. Appl. Math. 59, 1667–1685 (1999)
Calsina, A., Sanchón, M.: Stability and instability of equilibria of an equation of size structured population dynamics. J. Math. Anal. Appl. 286, 435–452 (2003)
Castillo-Chavez, C., Hethcote, H.W., Andreasen, V., Levin, S.A., Liu, W.M.: Epidemiological models with age structure, proportionate mixing, and cross-immunity. J. Math. Biol. 27, 233–258 (1989)
Chalub, F.A., Dolak-Struss, Y., Markowich, P., Oeltz, D., Schmeiser, C., Soref, A.: Model hierarchies for cell aggregation by chemotaxis. Math. Models Methods Appl. Sci. 16, 1173–1198 (2006)
Chu, J., Ducrot, A., Magal, P., Ruan, S.: Hopf bifurcation in a size structured population dynamic model with random growth. J. Differ. Equ. 247, 956–1000 (2009)
Crandall, M.G., Rabinowitz, P.H.: The Hopf bifurcation theorem in infinite dimensions. Arch. Ration. Mech. Anal. 67, 53–72 (1977)
Cushing, J.M.: Model stability and instability in age structured populations. J. Theor. Biol. 86, 709–730 (1980)
Cushing, J.M.: Bifurcation of time periodic solutions of the McKendrick equations with applications to population dynamics. Comput. Math. Appl. 9, 459–478 (1983)
Da Prato, G., Lunardi, A.: Hopf bifurcation for fully nonlinear equations in Banach space. Ann. Inst. H. Poincaré Anal. Non Linéaire 3, 315–329 (1986)
Ducrot, A., Liu, Z., Magal, P.: Essential growth rate for bounded linear perturbation of non densely defined Cauchy problems. J. Math. Anal. Appl. 341, 501–518 (2008)
Dyson, J., Villella-Bressan, R., Webb, G.F.: The steady state of a maturity structured tumor cord cell population. Discrete Contin. Dyn. Syst., Ser. B 4, 115–134 (2004)
Dyson, J., Villella-Bressan, R., Webb, G.F.: A spatial model of tumor growth with cell age, cell size, and mutation of cell phenotypes. Math. Model. Nat. Phenom. 2, 69–100 (2007)
Eftimie, R., de Vries, G., Lewis, M.A.: Modeling group formation and activity patterns in self-organizing collectives of individuals. Bull. Math. Biol. 69, 1537–1566 (2007a)
Eftimie, R., de Vries, G., Lewis, M.A.: Complex spatial group patterns result from different animal communication mechanisms. Proc. Natl. Acad. Sci. USA 104, 6974–6979 (2007b)
Eftimie, R., de Vries, G., Lewis, M.A.: Weakly nonlinear analysis of a hyperbolic model for animal group formation. J. Math. Biol. 59, 37–74 (2009)
Engel, K.-J., Nagel, R.: One Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000)
Guidotti, P., Merino, S.: Hopf bifurcation in a scalar reaction diffusion equation. J. Differ. Equ. 140, 209–222 (1997)
Gyllenberg, M., Webb, G.F.: A nonlinear structured population model of tumor growth with quiescence. J. Math. Biol. 28, 671–694 (1990)
Hadeler, K.P.: Reaction transport systems in biological modelling. In: Diekmann, O., et al. (eds.) Mathematics Inspired by Biology. Lect. Notes Math., vol. 1714, pp. 95–150. Springer, Berlin (1999)
Hillen, T.: Hyperbolic models for chemosensitive movement. Math. Models Methods Appl. Sci. 12, 1007–1034 (2002)
Hillen, T., Stevens, A.: Hyperbolic models for chemotaxis in 1-d. Nonlinear Anal., Real World Appl. 1, 409–433 (2000)
Hillen, T., Rohde, C., Lutscher, F.: Existence of weak solutions for a hyperbolic model for chemosensitive movement. J. Math. Anal. Appl. 260, 173–199 (2001)
Inaba, H.: Mathematical analysis for an evolutionary epidemic model. In: Horn, M.A., Simonett, G., Webb, G.F. (eds.) Mathematical Models in Medical and Health Sciences, pp. 213–236. Vanderbilt Univ. Press, Nashville (1998)
Inaba, H.: Endemic threshold and stability in an evolutionary epidemic model. In: Castillo-Chavez, C., et al. (eds.) Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory, pp. 337–359. Springer, New York (2002)
Kac, M.: A stochastic model related to the telegrapher’s equation. Rocky Mt. J. Math. 4, 497–509 (1956) (Reprint 1974)
Kellermann, H., Hieber, M.: Integrated semigroups. J. Funct. Anal. 84, 160–180 (1989)
Koch, H., Antman, S.S.: Stability and Hopf bifurcation for fully nonlinear parabolic-hyperbolic equations. SIAM J. Math. Anal. 32, 360–384 (2000)
Kostova, T., Li, J.: Oscillations and stability due to juvenile competitive effects on adult fertility. Comput. Math. Appl. 32, 57–70 (1996)
Liu, Z., Magal, P., Ruan, S.: Hopf bifurcation for non-densely defined Cauchy problems. Z. Angew. Math. Phys. (2010). doi:10.1007/s00033-010-0088-x
Magal, P.: Compact attractors for time-periodic age structured population models. Electron. J. Differ. Equ. 2001, 1–35 (2001)
Magal, P., Ruan, S.: On integrated semigroups and age structured models in L p spaces. Differ. Integral Equ. 20, 197–239 (2007)
Magal, P., Ruan, S.: On semilinear Cauchy problems with non-dense domain. Adv. Differ. Equ. 14, 1041–1084 (2009a)
Magal, P., Ruan, S.: Center manifold theorem for semilinear equations with non-dense domain and applications on Hopf bifurcation in age structured models. Mem. Am. Math. Soc. 202(951) (2009b)
Magal, P., Ruan, S.: Sustained oscillations in an evolutionary epidemiological model of influenza a drift. Proc. R. Soc. A 466, 965–992 (2010)
Prüss, J.: On the qualitative behavior of populations with age-specific interactions. Comput. Math. Appl. 9, 327–339 (1983)
Ricker, W.E.: Stock and recruitment. J. Fish. Res. Board Can. 11, 559–623 (1954)
Ricker, W.E.: Computation and interpretation of biological studies of fish populations. Bull. Fish. Res. Board Can. 191 (1975)
Sandstede, B., Scheel, A.: Hopf bifurcation from viscous shock waves. SIAM J. Math. Anal. 39, 2033–2052 (2008)
Simonett, G.: Hopf bifurcation and stability for a quasilinear reaction-diffusion system. In: Ferreyra, G., Goldstein, G., Neubrander, F. (eds.) Evolution Equations. Lect. Notes Pure and Appl. Math., vol. 168, pp. 407–418. Dekker, New York (1995)
Swart, J.H.: Hopf bifurcation and the stability of non-linear age-dependent population models. Comput. Math. Appl. 15, 555–564 (1988)
Thieme, H.R.: Semiflows generated by Lipschitz perturbations of non-densely defined operators. Differ. Integral Equ. 3, 1035–1066 (1990a)
Thieme, H.R.: “Integrated semigroups” and integrated solutions to abstract Cauchy problems. J. Math. Anal. Appl. 152, 416–447 (1990b)
Thieme, H.R.: Quasi-compact semigroups via bounded perturbation. In: Arino, O., Axelrod, D., Kimmel, M. (eds.) Advances in Mathematical Population Dynamics: Molecules, Cells and Man, pp. 691–713. World Sci. Publ., River Edge (1997)
Webb, G.F.: Theory of Nonlinear Age-Dependent Population Dynamics. Dekker, New York (1985)
Webb, G.F.: An operator-theoretic formulation of asynchronous exponential growth. Trans. Am. Math. Soc. 303, 155–164 (1987)
Webb, G.F.: Population models structured by age, size, and spatial position. In: Magal, P., Ruan, S. (eds.) Structured Population Models in Biology and Epidemiology. Lecture Notes in Math., vol. 1936, pp. 1–49. Springer, Berlin (2008)
Zhang, P., Feng, Z., Milner, F.: A schistosomiasis model with an age-structure in human hosts and its application to treatment strategies. Math. Biosci. 205, 83–107 (2007)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by P.K. Maini.
Research was partially supported by the French Ministry of Foreign and European Affairs program France–China PFCC EGIDE (20932UL).
Rights and permissions
About this article
Cite this article
Chu, J., Magal, P. & Yuan, R. Hopf Bifurcation for a Maturity Structured Population Dynamic Model. J Nonlinear Sci 21, 521–562 (2011). https://doi.org/10.1007/s00332-010-9091-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00332-010-9091-9