Skip to main content
Log in

Hopf Bifurcation for a Maturity Structured Population Dynamic Model

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

This article is devoted to investigate some dynamical properties of a structured population dynamic model with random walk on (0,+∞). This model has a nonlinear and nonlocal boundary condition. We reformulate the problem as an abstract non-densely defined Cauchy problem, and use integrated semigroup theory to study such a partial differential equation. Moreover, a Hopf bifurcation theorem is given for this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackleh, A.S., Deng, K.: A nonautonomous juvenile-adult model: Well-posedness and long-time behavior via a comparison principle. SIAM J. Appl. Math. 69, 1644–1661 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Amann, H.: Hopf bifurcation in quasilinear reaction-diffusion systems. In: Busenberg, S.N., Martelli, M. (eds.) Delay Differential Equations and Dynamical Systems. Lect. Notes Math., vol. 1475, pp. 53–63. Springer, Berlin (1991)

    Chapter  Google Scholar 

  • Arendt, W.: Vector valued Laplace transforms and Cauchy problems. Isr. J. Math. 59, 327–352 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Birkhäuser, Basel (2001)

    MATH  Google Scholar 

  • Arino, O.: A survey of structured cell population dynamics. Acta Biotheor. 43, 3–25 (1995)

    Article  Google Scholar 

  • Arino, O., Sanchez, E.: A survey of cell population dynamics. J. Theor. Med. 1, 35–51 (1997)

    Article  MATH  Google Scholar 

  • Bellomo, N., Bellouquid, A., Nieto, J., Soler, J.: Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems. Math. Models Methods Appl. Sci. 20, 1179–1207 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Bertoni, S.: Periodic solutions for non-linear equations of structure populations. J. Math. Anal. Appl. 220, 250–267 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Calsina, A., Ripoll, J.: Hopf bifurcation in a structured population model for the sexual phase of monogonont rotifers. J. Math. Biol. 45, 22–33 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Calsina, A., Saldana, J.: Global dynamics and optimal life history of a structured population model. SIAM J. Appl. Math. 59, 1667–1685 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Calsina, A., Sanchón, M.: Stability and instability of equilibria of an equation of size structured population dynamics. J. Math. Anal. Appl. 286, 435–452 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Castillo-Chavez, C., Hethcote, H.W., Andreasen, V., Levin, S.A., Liu, W.M.: Epidemiological models with age structure, proportionate mixing, and cross-immunity. J. Math. Biol. 27, 233–258 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Chalub, F.A., Dolak-Struss, Y., Markowich, P., Oeltz, D., Schmeiser, C., Soref, A.: Model hierarchies for cell aggregation by chemotaxis. Math. Models Methods Appl. Sci. 16, 1173–1198 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Chu, J., Ducrot, A., Magal, P., Ruan, S.: Hopf bifurcation in a size structured population dynamic model with random growth. J. Differ. Equ. 247, 956–1000 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Crandall, M.G., Rabinowitz, P.H.: The Hopf bifurcation theorem in infinite dimensions. Arch. Ration. Mech. Anal. 67, 53–72 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Cushing, J.M.: Model stability and instability in age structured populations. J. Theor. Biol. 86, 709–730 (1980)

    Article  MathSciNet  Google Scholar 

  • Cushing, J.M.: Bifurcation of time periodic solutions of the McKendrick equations with applications to population dynamics. Comput. Math. Appl. 9, 459–478 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Da Prato, G., Lunardi, A.: Hopf bifurcation for fully nonlinear equations in Banach space. Ann. Inst. H. Poincaré Anal. Non Linéaire 3, 315–329 (1986)

    MATH  Google Scholar 

  • Ducrot, A., Liu, Z., Magal, P.: Essential growth rate for bounded linear perturbation of non densely defined Cauchy problems. J. Math. Anal. Appl. 341, 501–518 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Dyson, J., Villella-Bressan, R., Webb, G.F.: The steady state of a maturity structured tumor cord cell population. Discrete Contin. Dyn. Syst., Ser. B 4, 115–134 (2004)

    MathSciNet  MATH  Google Scholar 

  • Dyson, J., Villella-Bressan, R., Webb, G.F.: A spatial model of tumor growth with cell age, cell size, and mutation of cell phenotypes. Math. Model. Nat. Phenom. 2, 69–100 (2007)

    Article  MathSciNet  Google Scholar 

  • Eftimie, R., de Vries, G., Lewis, M.A.: Modeling group formation and activity patterns in self-organizing collectives of individuals. Bull. Math. Biol. 69, 1537–1566 (2007a)

    Article  MathSciNet  MATH  Google Scholar 

  • Eftimie, R., de Vries, G., Lewis, M.A.: Complex spatial group patterns result from different animal communication mechanisms. Proc. Natl. Acad. Sci. USA 104, 6974–6979 (2007b)

    Article  MathSciNet  MATH  Google Scholar 

  • Eftimie, R., de Vries, G., Lewis, M.A.: Weakly nonlinear analysis of a hyperbolic model for animal group formation. J. Math. Biol. 59, 37–74 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Engel, K.-J., Nagel, R.: One Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000)

    MATH  Google Scholar 

  • Guidotti, P., Merino, S.: Hopf bifurcation in a scalar reaction diffusion equation. J. Differ. Equ. 140, 209–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Gyllenberg, M., Webb, G.F.: A nonlinear structured population model of tumor growth with quiescence. J. Math. Biol. 28, 671–694 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Hadeler, K.P.: Reaction transport systems in biological modelling. In: Diekmann, O., et al. (eds.) Mathematics Inspired by Biology. Lect. Notes Math., vol. 1714, pp. 95–150. Springer, Berlin (1999)

    Chapter  Google Scholar 

  • Hillen, T.: Hyperbolic models for chemosensitive movement. Math. Models Methods Appl. Sci. 12, 1007–1034 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen, T., Stevens, A.: Hyperbolic models for chemotaxis in 1-d. Nonlinear Anal., Real World Appl. 1, 409–433 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen, T., Rohde, C., Lutscher, F.: Existence of weak solutions for a hyperbolic model for chemosensitive movement. J. Math. Anal. Appl. 260, 173–199 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Inaba, H.: Mathematical analysis for an evolutionary epidemic model. In: Horn, M.A., Simonett, G., Webb, G.F. (eds.) Mathematical Models in Medical and Health Sciences, pp. 213–236. Vanderbilt Univ. Press, Nashville (1998)

    Google Scholar 

  • Inaba, H.: Endemic threshold and stability in an evolutionary epidemic model. In: Castillo-Chavez, C., et al. (eds.) Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory, pp. 337–359. Springer, New York (2002)

    Google Scholar 

  • Kac, M.: A stochastic model related to the telegrapher’s equation. Rocky Mt. J. Math. 4, 497–509 (1956) (Reprint 1974)

    Article  Google Scholar 

  • Kellermann, H., Hieber, M.: Integrated semigroups. J. Funct. Anal. 84, 160–180 (1989)

    Article  MathSciNet  Google Scholar 

  • Koch, H., Antman, S.S.: Stability and Hopf bifurcation for fully nonlinear parabolic-hyperbolic equations. SIAM J. Math. Anal. 32, 360–384 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Kostova, T., Li, J.: Oscillations and stability due to juvenile competitive effects on adult fertility. Comput. Math. Appl. 32, 57–70 (1996)

    Article  MATH  Google Scholar 

  • Liu, Z., Magal, P., Ruan, S.: Hopf bifurcation for non-densely defined Cauchy problems. Z. Angew. Math. Phys. (2010). doi:10.1007/s00033-010-0088-x

    Google Scholar 

  • Magal, P.: Compact attractors for time-periodic age structured population models. Electron. J. Differ. Equ. 2001, 1–35 (2001)

    MathSciNet  Google Scholar 

  • Magal, P., Ruan, S.: On integrated semigroups and age structured models in L p spaces. Differ. Integral Equ. 20, 197–239 (2007)

    MathSciNet  MATH  Google Scholar 

  • Magal, P., Ruan, S.: On semilinear Cauchy problems with non-dense domain. Adv. Differ. Equ. 14, 1041–1084 (2009a)

    MathSciNet  MATH  Google Scholar 

  • Magal, P., Ruan, S.: Center manifold theorem for semilinear equations with non-dense domain and applications on Hopf bifurcation in age structured models. Mem. Am. Math. Soc. 202(951) (2009b)

  • Magal, P., Ruan, S.: Sustained oscillations in an evolutionary epidemiological model of influenza a drift. Proc. R. Soc. A 466, 965–992 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Prüss, J.: On the qualitative behavior of populations with age-specific interactions. Comput. Math. Appl. 9, 327–339 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Ricker, W.E.: Stock and recruitment. J. Fish. Res. Board Can. 11, 559–623 (1954)

    Article  Google Scholar 

  • Ricker, W.E.: Computation and interpretation of biological studies of fish populations. Bull. Fish. Res. Board Can. 191 (1975)

  • Sandstede, B., Scheel, A.: Hopf bifurcation from viscous shock waves. SIAM J. Math. Anal. 39, 2033–2052 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Simonett, G.: Hopf bifurcation and stability for a quasilinear reaction-diffusion system. In: Ferreyra, G., Goldstein, G., Neubrander, F. (eds.) Evolution Equations. Lect. Notes Pure and Appl. Math., vol. 168, pp. 407–418. Dekker, New York (1995)

    Google Scholar 

  • Swart, J.H.: Hopf bifurcation and the stability of non-linear age-dependent population models. Comput. Math. Appl. 15, 555–564 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme, H.R.: Semiflows generated by Lipschitz perturbations of non-densely defined operators. Differ. Integral Equ. 3, 1035–1066 (1990a)

    MathSciNet  MATH  Google Scholar 

  • Thieme, H.R.: “Integrated semigroups” and integrated solutions to abstract Cauchy problems. J. Math. Anal. Appl. 152, 416–447 (1990b)

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme, H.R.: Quasi-compact semigroups via bounded perturbation. In: Arino, O., Axelrod, D., Kimmel, M. (eds.) Advances in Mathematical Population Dynamics: Molecules, Cells and Man, pp. 691–713. World Sci. Publ., River Edge (1997)

    Google Scholar 

  • Webb, G.F.: Theory of Nonlinear Age-Dependent Population Dynamics. Dekker, New York (1985)

    MATH  Google Scholar 

  • Webb, G.F.: An operator-theoretic formulation of asynchronous exponential growth. Trans. Am. Math. Soc. 303, 155–164 (1987)

    Article  Google Scholar 

  • Webb, G.F.: Population models structured by age, size, and spatial position. In: Magal, P., Ruan, S. (eds.) Structured Population Models in Biology and Epidemiology. Lecture Notes in Math., vol. 1936, pp. 1–49. Springer, Berlin (2008)

    Chapter  Google Scholar 

  • Zhang, P., Feng, Z., Milner, F.: A schistosomiasis model with an age-structure in human hosts and its application to treatment strategies. Math. Biosci. 205, 83–107 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Magal.

Additional information

Communicated by P.K. Maini.

Research was partially supported by the French Ministry of Foreign and European Affairs program France–China PFCC EGIDE (20932UL).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, J., Magal, P. & Yuan, R. Hopf Bifurcation for a Maturity Structured Population Dynamic Model. J Nonlinear Sci 21, 521–562 (2011). https://doi.org/10.1007/s00332-010-9091-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-010-9091-9

Keywords

Mathematics Subject Classification (2000)