Skip to main content
Log in

Existence of a Weak Solution in L p to the Vortex-Wave System

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The vortex-wave system is a coupling of the two-dimensional vorticity equation with the point-vortex system. It is a model for the motion of a finite number of concentrated vortices moving in a distributed vorticity background. In this article, we prove existence of a weak solution to this system with an initial background vorticity in L p, p>2, up to the time of first collision of point vortices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Chemin, J.-Y.: Sur le mouvement des particules d’un fluide parfait incompressible bidimensionel. Invent. Math. 103, 599–629 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Delort, J.-M.: Existence de nappes de tourbillon en dimension deux. J. Am. Math. Soc. 4, 553–586 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Diestel, J., Uhl, J.: Vector Measures. Mathematical Surveys, vol. 15. AMS, Providence (1977)

    MATH  Google Scholar 

  • Gamblin, P., Iftimie, D., Sideris, T.: On the evolution of compactly supported planar vorticity. Commun. Partial Differ. Equ. 24, 1709–1730 (1999)

    MathSciNet  MATH  Google Scholar 

  • Iftimie, D., Lopes Filho, M.C., Nussenzveig Lopes, H.J.: Two dimensional incompressible ideal flow around a small obstacle. Commun. Partial Differ. Equ. 28, 349–379 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Jin, D., Dubin, D.: Point vortex dynamics within a background vorticity patch. Phys. Fluids 13, 677–691 (2001)

    Article  MathSciNet  Google Scholar 

  • Lacave, C., Miot, E.: Uniqueness for the vortex-wave system when the vorticity is initially constant near the point vortex. SIAM J. Math. Anal. 41, 1138–1163 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Lions, P.-L.: Mathematical Topics in Fluid Mechanics: Incompressible Models. Oxford Lecture Series in Mathematics and Its Applications, vol. 3. Clarendon Press, Oxford (1996)

    MATH  Google Scholar 

  • Lopes Filho, M.C., Nussenzveig Lopes, H.J., Xin, Z.: Existence of vortex sheets with reflection symmetry in two space dimensions. Arch. Ration. Mech. Anal. 158, 235–257 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge Univ. Press, Cambridge (2002)

    MATH  Google Scholar 

  • Marchioro, C., Pulvirenti, M.: On the vortex-wave system. In: Francaviglia, M. (ed.) Mechanics, Analysis, and Geometry: 200 Years After Lagrange, pp. 79–95. Elsevier, Amsterdam (1991)

    Google Scholar 

  • Marchioro, C., Pulvirenti, M.: Vortices and localization in Euler flows. Commun. Math. Phys. 154, 49–61 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids. Springer, New York (1994)

    MATH  Google Scholar 

  • Newton, P.: The N-vortex problem on a sphere: geophysical mechanisms that break integrability. Theor. Comput. Fluid Dyn. 24, 137–149 (2010)

    Article  MATH  Google Scholar 

  • Poupaud, F.: Diagonal defect measures, adhesion dynamics and Euler equation. Methods Appl. Anal. 9, 533–561 (2002)

    MathSciNet  MATH  Google Scholar 

  • Schecter, D.: Two-dimensional vortex dynamics with background vorticity. In: Anderegg, F. et al. (eds.) CP606, Non-Neutral Plasma Physics IV, pp. 443–452. American Institute of Physics, New York (2002)

    Google Scholar 

  • Schecter, D., Dubin, D.: Theory and simulations of two-dimensional vortex motion driven by a background vorticity gradient. Phys. Fluids 13, 1704–1723 (2001)

    Article  Google Scholar 

  • Schochet, S.: The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation. Commun. Partial Differ. Equ. 20, 1077–1104 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Starovoitov, V.: Uniqueness of the solution to the problem of the motion of a point vortex. Sib. Mat. Zh. 35, 696–701 (1994)

    MathSciNet  Google Scholar 

  • Yudovich, V.I.: Non-stationary flows of an ideal incompressible fluid. Zh. Vyčisl. Mat. Mat. Fiz. 3, 1032–1066 (1963)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena J. Nussenzveig Lopes.

Additional information

Communicated by P. Newton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes Filho, M.C., Miot, E. & Nussenzveig Lopes, H.J. Existence of a Weak Solution in L p to the Vortex-Wave System. J Nonlinear Sci 21, 685–703 (2011). https://doi.org/10.1007/s00332-011-9097-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-011-9097-y

Keywords

Mathematics Subject Classification (2010)