Abstract
The vortex-wave system is a coupling of the two-dimensional vorticity equation with the point-vortex system. It is a model for the motion of a finite number of concentrated vortices moving in a distributed vorticity background. In this article, we prove existence of a weak solution to this system with an initial background vorticity in L p, p>2, up to the time of first collision of point vortices.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Chemin, J.-Y.: Sur le mouvement des particules d’un fluide parfait incompressible bidimensionel. Invent. Math. 103, 599–629 (1991)
Delort, J.-M.: Existence de nappes de tourbillon en dimension deux. J. Am. Math. Soc. 4, 553–586 (1991)
Diestel, J., Uhl, J.: Vector Measures. Mathematical Surveys, vol. 15. AMS, Providence (1977)
Gamblin, P., Iftimie, D., Sideris, T.: On the evolution of compactly supported planar vorticity. Commun. Partial Differ. Equ. 24, 1709–1730 (1999)
Iftimie, D., Lopes Filho, M.C., Nussenzveig Lopes, H.J.: Two dimensional incompressible ideal flow around a small obstacle. Commun. Partial Differ. Equ. 28, 349–379 (2003)
Jin, D., Dubin, D.: Point vortex dynamics within a background vorticity patch. Phys. Fluids 13, 677–691 (2001)
Lacave, C., Miot, E.: Uniqueness for the vortex-wave system when the vorticity is initially constant near the point vortex. SIAM J. Math. Anal. 41, 1138–1163 (2009)
Lions, P.-L.: Mathematical Topics in Fluid Mechanics: Incompressible Models. Oxford Lecture Series in Mathematics and Its Applications, vol. 3. Clarendon Press, Oxford (1996)
Lopes Filho, M.C., Nussenzveig Lopes, H.J., Xin, Z.: Existence of vortex sheets with reflection symmetry in two space dimensions. Arch. Ration. Mech. Anal. 158, 235–257 (2001)
Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge Univ. Press, Cambridge (2002)
Marchioro, C., Pulvirenti, M.: On the vortex-wave system. In: Francaviglia, M. (ed.) Mechanics, Analysis, and Geometry: 200 Years After Lagrange, pp. 79–95. Elsevier, Amsterdam (1991)
Marchioro, C., Pulvirenti, M.: Vortices and localization in Euler flows. Commun. Math. Phys. 154, 49–61 (1993)
Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids. Springer, New York (1994)
Newton, P.: The N-vortex problem on a sphere: geophysical mechanisms that break integrability. Theor. Comput. Fluid Dyn. 24, 137–149 (2010)
Poupaud, F.: Diagonal defect measures, adhesion dynamics and Euler equation. Methods Appl. Anal. 9, 533–561 (2002)
Schecter, D.: Two-dimensional vortex dynamics with background vorticity. In: Anderegg, F. et al. (eds.) CP606, Non-Neutral Plasma Physics IV, pp. 443–452. American Institute of Physics, New York (2002)
Schecter, D., Dubin, D.: Theory and simulations of two-dimensional vortex motion driven by a background vorticity gradient. Phys. Fluids 13, 1704–1723 (2001)
Schochet, S.: The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation. Commun. Partial Differ. Equ. 20, 1077–1104 (1995)
Starovoitov, V.: Uniqueness of the solution to the problem of the motion of a point vortex. Sib. Mat. Zh. 35, 696–701 (1994)
Yudovich, V.I.: Non-stationary flows of an ideal incompressible fluid. Zh. Vyčisl. Mat. Mat. Fiz. 3, 1032–1066 (1963)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by P. Newton.
Rights and permissions
About this article
Cite this article
Lopes Filho, M.C., Miot, E. & Nussenzveig Lopes, H.J. Existence of a Weak Solution in L p to the Vortex-Wave System. J Nonlinear Sci 21, 685–703 (2011). https://doi.org/10.1007/s00332-011-9097-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00332-011-9097-y