Skip to main content
Log in

A Fiber Bundle Approach to the Transpositional Relations in Nonholonomic Mechanics

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The equations of nonholonomic mechanics may be derived using a number of variational principles. This paper studies some of these principles from the contemporary geometric point of view, taking into account various bundle structures that are intrinsically present in the nonholonomic setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Please note that, in terms of the fictitious quantities π i called “quasicoordinates” that are employed by some authors (Ehlers et al. 2005, Greenwood 2003, Neimark and Fufaev 1972, Papastavridis 2002, etc.), the components ζ i correspond to the quantities denoted in the aforementioned literature by δπ i.

  2. Neimark and Fufaev use the operator d to represent differentiation with respect to time, not differentials.

References

  • Appell, P.: Traité de Mécanique Rationelle: Dynamique des Systèmes. Mécanique Analytique, 2nd edn. Gauthier-Villars, Paris (1904)

    MATH  Google Scholar 

  • Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Dynamical Systems III. Encyclopedia of Math., vol. 3. Springer, Berlin (1988)

    Google Scholar 

  • Ashwin, P., Melbourne, I.: Noncompact drift for relative equilibria and relative periodic orbits. Nonlinearity 10, 595–616 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Ball, K., Zenkov, D.V., Bloch, A.M.: Variational structures for Hamel’s equations and stabilization. Proc. IFAC (2012, to appear)

  • Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  • Bloch, A.M., Crouch, P.E.: Reduction of Euler Lagrange problems for constrained variational problems and relation with optimal control problems. In: The Proceedings of the 33rd IEEE Conference on Decision and Control, pp. 2584–2590 (1994)

    Google Scholar 

  • Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.M.: Nonholonomic mechanical systems with symmetry. Arch. Ration. Mech. Anal. 136, 21–99 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch, A.M., Marsden, J.E., Zenkov, D.V.: Quasivelocities and symmetries in nonholonomic systems. Dyn. Syst. 24, 187–222 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Cardin, F., Favretti, M.: On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints. J. Geom. Phys. 18, 295–325 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Cartan, É.: La théorie des groupes finis et continus et la géométrie différentielle traitées par la méthode du repère mobile. Gauthier-Villars, Paris (1937)

    Google Scholar 

  • Cendra, H., Marsden, J.E., Ratiu, T.S.: Geometric mechanics, Lagrangian reduction, and nonholonomic systems. In: Mathematics Unlimited—2001 and Beyond, pp. 221–273. Springer, New York (2001)

    Google Scholar 

  • Chaplygin, S.A.: On the motion of a heavy body of revolution on a horizontal plane. Phys. Sect. Imp. Soc. Friends Phys., Anthropol. Ethnograph., Mosc. 9, 10–16 (1897a) (Russian). Reproduced in Chaplygin 413–425 (1954)

    Google Scholar 

  • Chaplygin, S.A.: On some feasible generalization of the theorem of area with an application to the problem of rolling spheres. Mat. Sb. XX, 1–32 (1897b) (Russian). Reproduced in Chaplygin 434–454 (1954)

    Google Scholar 

  • Chaplygin, S.A.: On a rolling sphere on a horizontal plane. Mat. Sb. XXIV, 139–168 (1903) (Russian). Reproduced in Chaplygin 72–99 (1949), and Chaplygin 455–471 (1954)

    Google Scholar 

  • Chaplygin, S.A.: On the theory of the motion of nonholonomic systems. Theorem on the reducing factor. Mat. Sb. XXVIII, 303–314 (1911) (Russian). Reproduced in Chaplygin 28–38 (1949), and Chaplygin 426–433 (1954)

    Google Scholar 

  • Chaplygin, S.A.: Analysis of the Dynamics of Nonholonomic Systems. Classical Natural Sciences, Moscow (1949) (Russian)

    Google Scholar 

  • Chaplygin, S.A.: Selected Works on Mechanics and Mathematics. State Publ. House, Technical-Theoretical Literature, Moscow (1954) (Russian)

    Google Scholar 

  • Cortes, J., de Leon, M., de Diego, D.M.: Geometric description of vakonomic and nonholonomic dynamics, comparison of solutions. SIAM J. Control Optim. 41, 1389–1412 (2003)

    Article  MATH  Google Scholar 

  • de León, M., Marrero, J.C., de Diego, D.M.: Vakonomic mechanics versus nonholonomic mechanics: a unified geometrical approach. J. Geom. Phys. 35, 126–144 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • de León, M.: A historical review on nonholomic mechanics. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. a Mat. 106, 191–224 (2012). Available at doi:10.1007/s13398-011-0046-2

    Article  Google Scholar 

  • Do Carmo, M.D.: Riemannian Geometry. Birkhäuser, Boston (1992)

    MATH  Google Scholar 

  • Dubrovin, B.A., Fomenko, A.T., Novikov, S.P.: Modern Geometry–Methods and Applications, Part I. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  • Euclid: Catoptrics (280 BCE)

  • Ehlers, K., Koiller, J., Montgomery, R., Rios, P.: Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization. In: Marsden, J., Ratiu, T. (eds.) The Breadth of Symplectic and Poisson Geometry, pp. 75–120. Birkhäuser, Boston (2005)

    Google Scholar 

  • Euler, L.: De minimis oscillationibus corporum tam rigidorum quam flexililium, methodus nova et facilis. Comment. Acad. Sci. Imp. Petropolitanae 7, 99–122 (1734)

    Google Scholar 

  • Euler, L.: Methodus inveniendi lineas curvas. Lausannae, Genevae, apud Marcum-Michaelem Bosquet & Socias (1744)

  • Euler, L.: Decouverte d’un nouveau principe de Mecanique. Mém. Acad. Sci. Berlin 6, 185–217 (1752)

    Google Scholar 

  • Favretti, M.: Equivalence of dynamics for nonholonomic systems with transverse constraints. J. Dyn. Differ. Equ. 10, 511–535 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Fedorov, Y.N., Garciía-Naranjo, L.C., Vankerschaver, J.: The motion of the 2D hydrodynamic Chaplygin sleigh in the presence of circulation (2012). Preprint, available at arXiv:1201.5054

  • Pierre de Fermat: Letter to Coreau de la Chambre (1662)

  • Fernandez, O., Bloch, A.M.: Equivalence of the dynamics of nonholonomic and variational nonholonomic systems for certain initial data. J. Phys. A 41(34) (2008)

  • Fernandez, O., Bloch, A.M.: The Weitzenbock connection and time reparametrization in nonholonomic mechanics. J. Math. Phys. 52, 012901 (2011)

    Article  MathSciNet  Google Scholar 

  • Grácia, X., Marín-Solano, J., Muñoz-Lecanda, M.C.: Some geometric aspects of variational calculus in constrained systems. Rep. Math. Phys. 51, 127–148 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Gauss, C.F.: Über ein neues allgemeines Grundgesatz der Mechanik. J. Reine Angew. Math. 4, 232–235 (1829)

    Article  MATH  Google Scholar 

  • Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Dover, New York (2000)

    MATH  Google Scholar 

  • Greenwood, D.T.: Advanced Dynamics. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  • Hamel, G.: Die Lagrange–Eulerschen Gleichungen der Mechanik. Z. Math. Phys. 50, 1–57 (1904a)

    MATH  Google Scholar 

  • Hamel, G.: Über die Virtuellen Verschiebungen in der Mechanik. Math. Ann. 59, 416–434 (1904b)

    Article  MathSciNet  MATH  Google Scholar 

  • Hamel, G.: Über nichtholonome systeme. Math. Ann. 92, 33–41 (1924)

    Article  MathSciNet  MATH  Google Scholar 

  • Hamel, G.: Theoretische Mechanik. Eine Einheitliche Einfuehrung in die Gesamte Mechanik. Springer, Berlin (1949)

    MATH  Google Scholar 

  • Hamilton, W.R.: On a general method in dynamics, Part I. In: Phil. Trans. R. Soc. Lond., pp. 247–308 (1834)

    Google Scholar 

  • Hamilton, W.R.: On a general method in dynamics, Part II. In: Phil. Trans. R. Soc. Lond., pp. 95–144 (1835)

    Google Scholar 

  • Hero of Alexandria: Catoptrics [c. 50]

  • Hertz, H.R.: Gessamelte Werke, Band III. Der Prinzipien der Mechanik in neuem Zussamenhange dargestellt. Barth, Leipzig (1894)

    Google Scholar 

  • Hölder, O.: Über die principien von Hamilton und Maupertuis. Nachr. K. Ges. Wiss. Goettin., Math.-Phys., Kl. 2, 122–157 (1896)

    Google Scholar 

  • Ibn al-Haytham: Book of Optics (1021)

  • Kirgetov, V.I.: On transpositional relations in mechanics. J. Appl. Math. Mech. 22, 682–693 (1958). Available at http://www.sciencedirect.com/science/article/pii/0021892858900091

    Article  MathSciNet  MATH  Google Scholar 

  • Koiller, J.: Reduction of some classical non-holonomic systems with symmetry. Arch. Ration. Mech. Anal. 118, 113–148 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Kozlov, V.V.: Dynamics of systems with nonintegrable constraints I. Vestn. Mosk. Univ., Ser. I Mat. Mekh. 37(3), 92–100 (1982a)

    Google Scholar 

  • Kozlov, V.V.: Dynamics of systems with nonintegrable constraints II. Vestn. Mosk. Univ., Ser. I Mat. Mekh. 37(4), 70–76 (1982b)

    Google Scholar 

  • Kozlov, V.V.: Dynamics of systems with nonintegrable constraints III. Vestn. Mosk. Univ., Ser. I Mat. Mekh. 38(3), 102–111 (1983a)

    Google Scholar 

  • Kozlov, V.V.: Dynamics of systems with nonintegrable constraints IV. Integral principles. Vestn. Mosk. Univ., Ser. I Mat. Mekh. 42(5), 76–83 (1987)

    Google Scholar 

  • Lagrange, J.L.: Mechanique Analytique. Chez la Veuve Desaint (1788)

    Google Scholar 

  • Levi-Civita, T., Amaldi, U.: Compendio di Meccanica razionale (1951)

    Google Scholar 

  • Markeev, A.P.: Dynamics of a Body Being Contiguous to a Rigid Surface. Nauka, Moscow (1992)

    Google Scholar 

  • Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  • Maruskin, J.M.: Introduction to Dynamical Systems and Geometric Mechanics. Solar Crest Publishing, San José (2012)

    Google Scholar 

  • Maruskin, J.M., Bloch, A.M.: The Boltzmann–Hamel equations for optimal control. In: Proceedings of the 46th IEEE Conference on Decision and Control, pp. 554–559 (2007)

    Chapter  Google Scholar 

  • Maruskin, J.M., Bloch, A.M.: The Boltzmann–Hamel equations for the optimal control of mechanical systems with nonholonomic constraints. Int. J. Robust Nonlinear Control 21, 373–386 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Maupertuis: Lois du Repos de L’Acad. Royale des Sciences de Paris (1740)

    Google Scholar 

  • Neimark, Ju.I., Fufaev, N.A.: On the transpositional relations in the analytical mechanics of nonholonomic systems. J. Appl. Math. Mech. 24, 1541–1548 (1960)

    Article  Google Scholar 

  • Neimark, Ju.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, vol. 33. AMS, Providence (1972)

    MATH  Google Scholar 

  • Papastavridis, J.G.: Analytical Mechanics. Oxford University Press, London (2002)

    MATH  Google Scholar 

  • Poincaré, H.: Sur une forme nouvelle des équations de la mécanique. C. R. Acad. Sci. 132, 369–371 (1901)

    MATH  Google Scholar 

  • Routh, E.J.: Treatise on the Dynamics of a System of Rigid Bodies. MacMillan, London (1860)

    Google Scholar 

  • Rumiantsev, V.V.: On Hamilton’s principle for nonholonomic systems. J. Appl. Math. Mech. 42, 407–419 (1978)

    Article  Google Scholar 

  • Schouten, J.A.: Tensor Analysis for Physicists. Clarendon Press, Oxford (1951)

    MATH  Google Scholar 

  • Suslov, G.K.: On a particular variant of d’Alembert’s principle. Mat. Sb. 22, 687–691 (1901)

    Google Scholar 

  • Suslov, G.K.: Theoretical Mechanics, Technical/Theoretical Literature (Gostehizdat), Moscow (1946)

    Google Scholar 

  • Vierkandt, A.: Über gleitende und rollende Bewegung. Monatshefte Math. Phys. III, 31–54 (1892)

    Article  MathSciNet  Google Scholar 

  • Voronets, P.: On the equations of motion for nonholonomic systems. Mat. Sb. 22, 659–686 (1901)

    Google Scholar 

  • Walker, G.T.: On a dynamical top. Pure Appl. Math. Q. 28, 175–184 (1896)

    Google Scholar 

  • Zenkov, D.V., Leok, M., Bloch, A.M.: Hamel’s formalism and variational integrators on a sphere. Proc. IFAC (2012, to appear)

Download references

Acknowledgements

We would like to thank the National Science Foundation for support and the reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony M. Bloch.

Additional information

Communicated by P. Newton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maruskin, J.M., Bloch, A.M., Marsden, J.E. et al. A Fiber Bundle Approach to the Transpositional Relations in Nonholonomic Mechanics. J Nonlinear Sci 22, 431–461 (2012). https://doi.org/10.1007/s00332-012-9144-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-012-9144-3

Keywords

Mathematics Subject Classification

Navigation