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Abstract This paper considers the epidemiology of two strains (I, J ) of a disease
spreading through a population represented by a scale-free network. The epidemi-
ological model is SIS and the two strains have different reproductive numbers. Su-
perinfection means that strain I can infect individuals already infected with strain J ,
replacing the strain J infection. Individuals infected with strain I cannot be infected
with strain J . The model is set up as a system of ordering differential equations and
stability of the disease free, marginal strain I and strain J , and coexistence equilibria
are assessed using linear stability analysis, supported by simulations. The main con-
clusion is that superinfection, as modeled in this paper, can allow strain I to coexist
with strain J even when it has a lower basic reproductive number. Most strikingly, it
can allow strain I to persist even when its reproductive number is less than 1.
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1 Introduction

The key property of a network is its degree distribution. For any network, the de-
gree distribution P(k) for each k ≥ 1 is the fraction of nodes with degree k in
the population, where

∑
P(k) = 1. A Scale-free (SF) network (Barabási and Al-

bert 1999) exhibits a power-law degree distribution (P(k) ∝ k−γ where γ usually
ranges between 2 and 3) and provides a more accurate model of real world net-
works (Small and Tse 2005; Small et al. 2007), such as social networks or the
Internet. The epidemic spreading process on SF networks has been widely stud-
ied (Pastor-Satorras and Vespignani 2001, 2002; Newman 2005; Wu et al. 2010;
Fu et al. 2008).

In this context, the so-called Susceptible-Infected-Susceptible (SIS) model (e.g.,
Pastor-Satorras and Vespignani 2001) and the Susceptible-Infected-Removed (SIR)
(e.g., Madar et al. 2004) are frequently used in epidemiology. The main contribution
of Pastor-Satorras and Vespignani (2001) is to identify the conditions beyond which
an epidemic spreads and persists in a population by means of a mean-field approach.
Although there are some other approaches, e.g., the stochastic process approach
(Newman 2005; Wang et al. 2003), the mean-field approach is often used to model
the epidemic spreading and analyze its dynamical behaviors (Lou and Ruggeri 2010;
Jin et al. 2011). Interestingly, it cannot only be used in the single strain/pathogen, but
can also be effective in multiple strains, such as two-strain epidemic models (Masuda
and Konno 2006; Ahn et al. 2006).

In the present work, we consider the epidemic propagation dynamics for two
competing strains (I, J ) in a population represented by a scale-free network and
assume that these two strains interact by superinfection. The concept of compet-
ing between the two strains of infection (or pathogens) means that two strains
from one pathogen cannot co-infect in a single host at any one time. Hence, this
concept is referred as a dynamical interaction (Marceau et al. 2011) between two
strains/pathogens and is different from model used in Newman (2005). Moreover,
superinfection incorporating competing strains means that strain I can infect in-
dividuals already infected with strain J , replacing the strain J infection (Nowak
and May 1994). Besides the context of epidemiology (Nowak and May 1994;
Smith et al. 2005), superinfection between competing strains can be considered as a
model of interaction between malicious agents and immunizing agents in the spread-
ing of computing viruses, indicating that the immunizing agent spreads in the whole
Internet to seek out and kill the malicious worm (Ahn et al. 2006). Another example
is competing ideas/rumor (Wang et al. 2012) and the interaction between aware and
unaware agents (Funk et al. 2010), which allows for one idea/rumor/awareness to be
replaced by the other one for each individual.

Although the results on superinfection in mixed populations (Nowak and May
1994; Thomasey and Martcheva 2008; NuNo et al. 2005) are abundant, these results
cannot be directly and easily extended to the case in a heterogenous population rep-
resented by scale-free networks. Recently, Masuda and Konno (2006) studied an SIS
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model with competing pathogens and mutation in networks by analyzing the exis-
tence of the positive steady state and obtained the impact of mutation rate on epidemic
threshold. However, to our knowledge, there has been no further work in this area. In
our model, we restrict our attention to the so-called strain dynamics including both
strain coexistence (the simultaneous propagation of two competing strains) and strain
replacement (the strain with the smaller reproductive number can become predomi-
nant and another strain with the larger reproductive number will die out) (Thomasey
and Martcheva 2008; Cai et al. 2007). In other words, which strain can prevail and
persist in a population? To solve this issue, it is necessary to determine the conditions
for strain coexistence or strain replacement. We will find that these conditions are not
only related with both the reproductive numbers and network structure but also with
the associated recovery rate.

For the sake of the following analysis, we firstly present a frequently used lemma.

Lemma 1 For the real matrix A = [aij ] ∈ Rn×n where aij = δij σi + piqj (pi, qj ≥
0, i, j = 1,2, . . . , n) and δij is the Kronecker symbol, we have that the determent of
A is such that

det[A] = σ1σ2 · · ·σn + p1q1σ2 · · ·σn + σ1p2q2σ3 · · ·σn

+ · · · + σ1σ2 · · ·σn−1pnqn.

Specially, if σk �= 0, k = 1, . . . , n, then

det[A] =
(

1 +
n∑

k=1

pkqk

σk

)
n∏

k=1

σk;

if σk = σ, k = 1, . . . , n, then

det[A] = σn−1

(

σ +
n∑

k=1

pkqk

)

.

This lemma is easily proved by the basic determent transformations. We denote, as
usual, by λ(A) the spectrum of the square matrix A and λi(A) ∈ λ(A) is an eigenvalue
of A. Also, it can be seen that det[A − λI] can be directly computed by Lemma 1.

The remainder of this work is presented as follows. Firstly, we study the two-
strain epidemic model with superinfection, to obtain threshold conditions of strain
coexistence and strain replacement. Next, simulations have been made to verify the
obtained results. Finally, conclusions and discussions for our work are given.

2 Model and Analysis

We consider the following dynamical process.
susceptible-infected-susceptible β1, β2, γ1, γ2. The epidemic model is SIS (Brauer

2005). SIS models can be adapted for some STDs (such as gonorrhea (Castillo-
Chavez et al. 1999)). Note that it may be the case that the two strains have different
spreading rates, we let the spreading rates of the strain I and strain J be β1 and β2,
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respectively. A susceptible individual may become infected owing to contact with
other infected ones, and an infected individual may also recover/be treated into the
susceptible sate, with the recovery/treatment rates γ1, γ2 for strain I and strain J ,
respectively.

superinfection δ. For those individuals infected with strain J , they may not escape
from infection by strain I before recovering to the susceptible state. Hence we intro-
duce the constant transition rate from strain J to strain I , δ, also called the superinfec-
tion rate. In addition to superinfection, the model includes components representing
“restraint of contact” and “saturated infectivity,” which make our model both more
reasonable and general.

restraint of contact ψ(k). Recently, Li et al. (2010) studied the relation be-
tween the epidemic prevalence and epidemic threshold in networks with effective
contact. Perhaps a more plausible scenario is that an infected individual may re-
strain its behavior such as contact with other friends owing to its physical fitness.
Motivated by this, we suppose an individual already infected with strain J poten-
tially decreases contact with its friends infected with strain I . The restraint of con-
tact between infected individuals actually reflects the adjustment of susceptibility
(Olinky and Stone 2004) or the effect of individual awareness (Gross et al. 2006;
Shaw and Schwartz 2008; Funk et al. 2009). For an individual with connectivity k,
we introduce the restraint of contact ψ(k). Obviously, ψ(k) ≤ k.

saturated infectivity ϕ(k). When considering transmission of a disease in a finite
time period, it is natural to suppose that there exists an upper bound on the infectivity
of a highly connected individual (Olinky and Stone 2004), instead of the infectivity
being equal to the node degree (Pastor-Satorras and Vespignani 2001). For simplicity,
we assume that the infectivities of strain I and strain J are the same function of the
node degree k, denoted by ϕ(k), which fulfils the three conditions: (i) ϕ(k) ≤ k;
(ii) ϕ(k) is monotonously increasing; (iii) limk→∞ ϕ(k) = L > 0.

Recently, Fu et al. (2008) introduced a model of infectivity as a piecewise linear
function of node degree. It can be shown that the piecewise linear infectivity is a
special case of the saturated infectivity defined above.

We study strain dynamics in scale-free networks by using the mean field approach
which proves useful for single strain or multiple strain epidemic systems (Pastor-
Satorras and Vespignani 2001; Masuda and Konno 2006). To this end, we divide all
the nodes in the network into classes in view of their degrees and their epidemio-
logical states. That is, those nodes with the same number of neighbors and the same
states belong to the same class. Let ik(t) and jk(t) represent the densities at time t of
nodes in class with degree k infected by strain I and strain J respectively. Based on
all these assumptions, a general two-strain epidemic model with superinfection can
be described by the coupled nonlinear differential equations as

{ d
dt

ik(t) = −γ1ik + β1k(1 − ik − jk)Θ1(t) + δψ(k)jkΘ1(t)

d
dt

jk(t) = −γ2jk + β2k(1 − ik − jk)Θ2(t) − δψ(k)jkΘ1(t)
(1)

where Θ1(t) and Θ2(t), called the force of infection (Zou et al. 2011), repre-
sent the probabilities that any given link points to a node infected with strain I

and strain J respectively. In general, Θ1(t) and Θ2(t) depend on the node de-
gree (Fu et al. 2008) and can be denoted as Θ1(k, t) = ∑

k′ P(k′|k)
ϕ(k′)

k′ ik′(t) and
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Θ2(k, t) = ∑
k′ P(k′|k)

ϕ(k′)
k′ jk′(t), where saturated infectivities are used and P(k′|k)

denotes the probability that a randomly selected edge emitting from a node with de-
gree k points to the node with degree k′.

In this work, we suppose that the connectivity of nodes is uncorrelated. For more
realistic correlated cases, the discussion is similar to that below, but the expressions
are much more complicated. In degree-uncorrelated networks, we have P(k′|k) =
k′P(k′)/〈k〉 where the mean degree 〈k〉 = ∑

s sP (s). Using this condition, Θ1(t)

and Θ1(t) are not related with k and become more simple as follows:

Θ1(t) =
∑

k′ ϕ(k′)P (k′)ik′(t)

〈k〉 , Θ2(t) =
∑

k′ ϕ(k′)P (k′)jk′(t)

〈k〉 . (2)

It can be seen that system (1) has five parameters, i.e., β1, β2, γ1, γ2, δ, which can
be reduced to four by using a typical time-scale transformation. Hence, both γ1 and
γ2 can not simultaneously be set to 1. However, this case is always ignored in the
literature (Masuda and Konno 2006). In the following analysis, we will see that the
recovery rates play an important role on the epidemic dynamics. So we still keep the
number of parameters in system (1). In addition, it will be found that the composed
parameters τi = βi

γi
, i = 1,2 are important to analyze the epidemic dynamics, and they

are referred to as the effective spreading rates for strain I and strain J , respectively.
Using these two composed parameters, we introduce two parameters

R1 = τ1〈kϕ(k)〉
〈k〉 , R2 = τ2〈kϕ(k)〉

〈k〉 , (3)

where 〈kϕ(k)〉 = ∑
s sϕ(s)P (s) follows as the usual meaning of 〈·〉. They are just the

effective reproductive numbers (Olinky and Stone 2004) for strain I and strain J , re-
spectively, when there is only one strain epidemic through the network. The effective
reproductive number characterizes the level of epidemic outbreak (Olinky and Stone
2004) and represents the average number of new infections an infection causes early
in an outbreak (Miller 2007). Also, it is easy to see that the two reproductive numbers
are related to the effective spreading rates. If τ1 = τ2, then R1 = R2. Otherwise, they
are not identical to each other.

Before we study the model (1) more deeply, it is interesting to consider some
reduced forms of it.

Reduced Model I: δ = 0. In this case, the model is
{ d

dt
ik(t) = −γ1ik + β1k(1 − ik − jk)Θ1(t)

d
dt

jk(t) = −γ2jk + β2k(1 − ik − jk)Θ2(t).
(4)

This model (when ϕ(k) = k), which we studied in Wu et al. (2011), accounts for the
pure competition between two strains in the same network. Our results indicate the
existence of a simple competing-exclusion, i.e., only the strain with a higher repro-
ductive number can prevail and persist for ever in the population. We will see that
this nature can be kept in the general model (1) when the superinfection rate δ is
sufficiently small.

Reduced Model II: β1 = β2 = β,γ1 = γ2 = γ . Let ρk = ik + jk for each k, then
the model (1) can be reduced into

d

dt
ρk(t) = −γρk + βk(1 − ρk)Θ(t), (5)
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where Θ(t) = Θ1(t) + Θ2(t). This model is the standard networked SIS model
(Pastor-Satorras and Vespignani 2001). Hence, when R1 = R2 = R ≤ 1, both strains
dies out; when R > 1, strain I or strain J prevails eventually. What is more, we can
show that only strain J can persist in the network.

2.1 Stability of the Disease-Free Equilibrium (DFE)

It is easy to see that there is always a DFE E0 : i∗k = 0, j∗
k = 0, k = 1, . . . , n for

system (1), where ∗ stands for the steady state. Omitting the high order terms in
Eqs. (1), it is easily deduced that E0 is locally stable when R1 ≤ 1, R2 ≤ 1 (Wu et
al. 2011).

In addition to the trivial disease-free equilibrium, the model (1) may also have
nontrivial equilibria: the boundary equilibria EI : i∗k > 0, j∗

k = 0, k = 1, . . . , n and
EJ : i∗k = 0, j∗

k > 0, k = 1, . . . , n, and the positive/endemic equilibrium E∗ : i∗k >

0, j∗
k > 0, k = 1, . . . , n.

2.2 Stability of EI

We next examine the local stability of EI . To this end, perturbing the stationary state
(i∗k ,0)k≥1 so that ik = εk + i∗k and jk = ηk . Upon omitting higher powers of εk, ηk ,
we can get the linear differential equations

{ d
dt

εk(t) = −(γ1 + β1kΘ∗
1 )εk + β1k(1 − i∗k )Θ1

d
dt

ηk(t) = −[γ2 − δψ(k)Θ∗
1 ]ηk + β2k(1 − i∗k )Θ2.

(6)

The Jacobi matrix determining the stable state thus can be described as

A =
(

A1 A2
0 A3

)

.

Since λ(A) = λ(A1)∪ λ(A3), it is required to determine the eigenvalues of matrix
A1 and A3 respectively. In order to assess the eigenvalues of matrix A1 by Lemma 1,
we denote the entry of matrix A1 − λI be ars = δrsσr + prqs , where pr = β1r(1 −
i∗r ), qs = 〈k〉−1ϕ(s)P (s) and σr = −γ1 − β1rΘ

∗
1 − λ. According to the first equality

in Lemma 1, σr �= 0 for each r , otherwise there exists two different r values such that
σr = 0 (this is impossible in view of the expression for σr ). With the second equality
in Lemma 1, det[A1 − λI] = 0 is equivalent to

1 +
n∑

k=1

pkqk

σk

= 0 ⇐⇒ β1〈k〉−1
∑

k

kϕ(k)P (k)

Δ(k)
= 1 (7)

where Δ(k) = γ1+λ+β1kΘ∗
1

1−i∗k
.

Since 1 − i∗k = γ1i
∗
k

β1kΘ∗
1

, (7) becomes the following equality

∑

k

ϕ(k)P (k)i∗k
γ1 + λ + β1kΘ∗

1
=

∑

k

ϕ(k)P (k)i∗k
γ1

, (8)
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which establishes n complex roots, λi, i = 1, . . . , n. Upon substituting each root
λs = as + bsi into (8), we obtain

∑

k

ϕ(k)P (k)i∗k (γ1 + as + β1kΘ∗
1 )

(γ1 + as + β1kΘ∗
1 )2 + b2

s

=
∑

k

ϕ(k)P (k)i∗k
γ1

, (9)

and

−bs

∑

k

ϕ(k)P (k)i∗k
(γ1 + as + β1kΘ∗

1 )2 + b2
s

i = 0. (10)

The second equation (10) implies that bs = 0. Hence, the eigenvalues λs = as are all
real numbers. From (8), one can get that all eigenvalues of matrix A1 are negative,
that is, λs < 0, s = 1, . . . , n.

On the other hand, by solving the equation det[A3 − λI] = 0 we obtain the maxi-
mum eigenvalue of A3

λmax(A3) = 1

β1
(β2γ1 − β1γ2) − δ〈k〉−1

n∑

k=1

ϕ(k)ψ(k)P (k)i∗k .

In order to make sure of the stability of EI , it is necessary that λmax(A3) < 0, that is,

δ ≥ δc = β2γ1 − β1γ2

β1〈k〉−1
∑n

k=1 ϕ(k)ψ(k)P (k)i∗k
.

In the special case, when the effectively uniform contact ψ(k) = l is assumed (Li et
al. 2010), we have

δc = β2γ1 − β1γ2

β1lΘ
∗
1

, (11)

where Θ∗
1 satisfies

1 = τ1

〈k〉
∑

k′

k′ϕ(k′)P (k′)
1 + τ1k′Θ∗

1
. (12)

According to the expression of δc , it is easy to see that EI is always stable if
R1 ≥ R2 regardless of δ because δc ≤ 0 at this case. That is to say, the superinfection
has no remarkable effect on the epidemic development under this condition. So in the
present work, we mainly focus on the assumption: (H) R1 < R2.

2.3 Stability of EJ

Herein, we discuss conditions for the stability of EJ , i.e., i∗k = 0, j∗
k > 0, k = 1, . . . , n

(here, R2 > 1). Using the method similar to the above subsection, we get the condi-
tion of this issue such that

1

β2
(β1γ2 − β2γ1) + δ〈k〉−1

n∑

k=1

ϕ(k)ψ(k)P (k)j∗
k < 0.

This leads to

δ ≤ δ′
c = β2γ1 − β1γ2

β2〈k〉−1
∑n

k=1 ϕ(k)ψ(k)P (k)j∗
k

.
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Specifically, when ψ(k) = l, we have

δ′
c = β2γ1 − β1γ2

β2lΘ
∗
2

, (13)

where Θ∗
2 satisfies

1 = τ2

〈k〉
∑

k′

k′ϕ(k′)P (k′)
1 + τ2k′Θ∗

2
.

2.4 Main Theoretical Results

For the model (1), it seems to be difficult to obtain sufficient conditions for the posi-
tive equilibrium E∗. However, it is helpful to note that the dynamical behaviors in the
case δ = 0. Actually, this case corresponds to the most basic and simplest competing
model. Since (H) is assumed, EJ is stable and only strain J prevails in the network
(Wu et al. 2011). With the order parameter δ increasing, we can investigate the impact
of superinfection on the epidemic transmission. In the following analysis, we use a
novel quantity, the ratio of δc and δ′

c ,

Λ = δ′
c

δc

= β1
∑n

k=1 ϕ(k)ψ(k)P (k)i∗k
β2

∑n
k=1 ϕ(k)ψ(k)P (k)j∗

k

.

Based on the knowledge of equilibria E0, EI , and EJ , we have the following analysis
and conclusions under the assumption (H).

Case I: R1 ≤ 1 < R2. In this case, EI does not exist, but EJ exists. Note that
R2 > 1, we have E0 is unstable (Wu et al. 2011). If δ > δ′

c, then EJ is unstable too.
In a single strain model, the condition of an epidemic outbreak is always established
according to the local stability of a DFE (Allen Linda and van den Driessche 2008).
Similarly, in our two-strain model if δ > δ′

c , then both the boundary equilibrium and
the DFE are unstable and further two competing strains can co-exist. If δ ≤ δ′

c, only
strain J dominates the prevalence. (This is based on the assumption that the local sta-
bility of the positive equilibrium E∗ excludes the local stability of the boundary equi-
librium EJ . The following analysis also uses this. These judgments will be backed
up by simulations later.) So if δ′

c < 1, then two strains can coexist in a population if
δ > δ′

c and strain replacement cannot emerge.
Case II: 1 < R1 < R2. This case is more complicated and can be further classified

into three cases:
(1) Λ < 1 (that is, δ′

c < δc). If δ ≤ δ′
c, only strain J prevails. If δ ≥ δc, only strain

I prevails. If δ′
c < δ < δc, we can see that both strain I and strain J can coexist since

E0,EI and EJ are all unstable. In conclusion, under the assumption that δc < 1,
strain coexistence occurs if δ ∈ (δ′

c, δc) and then strain replacement emerges if δ ≥ δc

with the superinfection rate δ increasing from zero to 1.
(2) Λ > 1 (that is, δ′

c > δc). Since EI is stable if and only if δ ≥ δc and EJ is
stable if and only if δ ≤ δ′

c. So we have following conclusions. If δ < δc , only strain I

spreads eventually; if δ ∈ [δc, δ
′
c], both EI and EJ are stable which corresponds to a

bistable phenomenon and the steady state is related to the initial infection distribution;
if δ > δ′

c, only strain I transmits in the network and strain replacement occurs since
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the reproductive number of strain I is smaller than strain J . For simplicity, we call
δc coexistence threshold and δ′

c replacement threshold.
It is noteworthy to remark that this case possibly exists. Since i∗k , j∗

k only depend
on τ1, τ2, respectively, if τ1 ≈ τ2, it is easy to adjust β1/β2 and let Λ be larger than
unity.

(3) Λ = 1. This is the critical case. At this case, if δ < δc = δ′
c , EJ is stable;

otherwise, EI is stable. The threshold δc is the critical point of the on-off phenomenon
between strain I or strain J prevails.

In the final part, we would like to prove the conclusions about two reduced mod-
els. For the reduced model I, we conclude that the feature of a simple competing-
exclusion can be kept when δ is sufficiently small. In fact, without loss of generality,
we assume that R1, R2 > 1. When R1 > R2 we have that δc, δ

′
c < 0, so EI is always

stable and EJ is always unstable. When R1 < R2, we have that δc, δ
′
c > 0. If we take

δ such that δ < min{δc, δ
′
c}, then only EJ is stable.

For the reduced model II, we can analyze its stability (when R > 1) to determine
which strain can prevail. In this model, β1 = β2 and γ1 = γ2. Upon substituting these
conditions to the expressions of δc and δ′

c, we have that δc = δ′
c = 0. So the superin-

fection rate δ is always larger than δc , which indicates that only strain I can persist.
Compared to the model (1), we can not observe the phenomenon of strain coexis-
tence or strain replacement in this model. So strain dynamics are not only related to
the superinfection rate, but also to the difference of two strains in the epidemiology.

3 Simulations

In Sect. 2, we obtained conditions for strain coexistence and strain replacement. We
know that the superinfection rate plays an important role in determining which strain
can cause an epidemic. On the other hand, these conditions are obtained by linear sta-
bility analysis. In this section, these theoretical results will be supported by numerical
simulations. It is worth noting that the simulations are a numerical integration of the
deterministic ordinary differential equations (1) and (2) with respect to time.

The underlying network is a Barabási–Albert (BA) scale-free network (Barabási
and Albert 1999) with the degree distribution P(k) ∼ k−3θ(kc − k) (where θ(x) is
the Heaviside step function, and kc = 83 is a hard cutoff due to the network size
(Pastor-Satorras and Vespignani 2002)), the average degree 〈k〉 = 6, and the network
size N = 1000. In all simulations, we take ψ(k) = 1 and ϕ(k) is of piecewise linear
form (Fu et al. 2008):

ϕ(k) = min{k,20}.
In order to investigate the epidemic spreading behavior, densities of nodes infected

with strain I and J , denoted by ρi(t) = ∑
s P (s)is(t) and ρj (t) = ∑

s P (s)js(t)

respectively, are frequently used in epidemiology. We denote by ρi(∞) and ρj (∞)

the steady state (asymptotic) values of infection density for strain I and strain J ,
respectively. In our simulations, we will inspect the impact of the superinfection rate
on these two steady state values.
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Fig. 1 Densities of infected
nodes by strain I and J with
respect to superinfection rate δ

for given parameters
β1 = 0.0008, β2 = 0.3,

γ1 = 0.01, γ2 = 1

We firstly consider the case R1 < 1. According to the conclusions obtained in
Sect. 2.4, we mainly justify strain coexistence. In order to do this, we must make sure
that δ′

c < 1. Note that

δ′
c = β2γ1 − β1γ2

β2Θ
∗
2

(14)

and Θ∗
2 is a function of R2 for given ϕ(k) and P(k), so Eq. (14) can be written as

δ′
c

γ1
= R2 − R1

R2Θ
∗
2 (R2)

, (15)

which indicates that δ′
c is related with γ1 (or say the average infection period 1

γ1
)

under the fixed R1 and R2. This tell us that δ′
c can be made smaller by adjusting

the associated recovery rate γ1. In simulations, we set β1 = 0.0008, β2 = 0.3, γ1 =
0.01, γ2 = 1. In the light of R1 = τ1

〈kϕ(k)〉
〈k〉 and the formula (see (9) in Fu et al.

2008), we have (
〈kϕ(k)〉

〈k〉 )−1 = 0.11 (of course approximately). So τ1 = 0.08 < 0.11
(i.e., R1 < 1) and τ2 = 0.3 (i.e., R2 > 1). According to (14) and Θ∗

2
∼= 0.43 (using

matlab software), we have δ′
c
∼= 0.0171.

In Fig. 1, we draw the change of ρi(∞) and ρj (∞) with the superinfection rate δ

increasing. This plot shows that the theoretical value of δ′
c is very close to the simu-

lation value. Although strain replacement cannot occur when R1 < 1, an interesting
phenomenon similar to strain replacement is that strain I spreads at high level and
strain J spreads at low level when the superinfection rate δ is enough large.

Next, we investigate the case R1 > 1. We take β1 = 0.2, β2 = 0.3, and unit recov-
ery rates γ1 = γ2 = 1. By approximate relations (Θ∗

1
∼= 0.264 and Θ∗

2
∼= 0.43041),

we have δc
∼= 1.8939 > 1 and δ′

c
∼= 0.7752 < 1. Hence, strain coexistence can emerge

while strain replacement can not occur, which can be seen in Fig. 2.
However, we can find strain replacement by slightly adjusting parameters. In

Fig. 3, we take β1 = 0.25 and leave the other parameters as used in Fig. 2. By the
computation method above, we get δc

∼= 0.5574 < 1 and δ′
c
∼= 0.3872 < 1, which es-

tablishes the three intervals of parameter δ. These threshold values agree with the
simulation results in Fig. 3. From this, it can be seen that strain replacement occurs
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Fig. 2 Densities of infected
nodes by strain I and J with
respect to superinfection rate δ

for given parameters
β1 = 0.2, β2 = 0.3, γ1 = γ2 = 1

Fig. 3 Densities of infected
nodes by strain I and J with
respect to superinfection rate δ

for given parameters
β1 = 0.25, β2 = 0.3,

γ1 = γ2 = 1

after strain coexistence by enhancing parameter δ. Meanwhile, the superinfection
mechanism potentially generates strain coexistence in competing strains whenever
R1 ≤ 1 or R1 > 1.

According to the formula (11) and (13), an interesting phenomenon has also been
found, that is, the values of δc and δ′

c are closely related with the recovery rate γ1
even if both R1 and R2 are unchanged. Consequently, we rewrite these thresholds as
functions of γ1, δc = δc(γ1) and δ′

c = δ′
c(γ1). It then follows from (11) and (13) that

both the rates of change ∂δ′
c/∂γ1 and ∂δc/∂γ1 are larger than zero. What is more,

it can be seen that the former change is linear in the parameter γ1, while the latter
one is nonlinear in the same parameter. These features can be easily observed in the
parametric plot (Fig. 4).

In Fig. 4, the solid line (i.e., the nonlinear curve in inset plot) stands for δc(γ1) and
the dash one represents δ′

c(γ1) (i.e., the straight line in inset plot). Apparently, these
two curves split the whole region into three parts: conventional phase (A, bottom),
coexistence phase (B, middle), and replacement phase (C, upper). The conventional
phase refers to the one where the strain with a higher reproductive number can prevail
and persist for ever in competing dynamics (Wu et al. 2011). It can be found from
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Fig. 4 Parametric plot of the
superinfection rate δ and the
recovery rate γ1. Parameter
values used in this plot:
β1 = 0.25, β2 = 0.3, and
γ2 = 1. The two threshold lines
in the plot are numerically
solved in (11) and (13),
respectively. Inset: a perfect plot
of the original parametric plot

Fig. 5 The prevalence with
respect to the superinfection rate
δ. Simulations indicate that
superinfection can inhibit the
epidemic spreading

this figure that the conventional phase can be transitioned into the other phases by
two routes: one is to raise the value of δ and the other is to decrease the value of γ1.
This phenomenon may be of relevance for vaccination programmes (Thomasey and
Martcheva 2008).

Superinfection is known to facilitate the coexistence of several pathogen strains
in a host population (Boldin and Diekmann 2008), which can be seen in Fig. 4. Ad-
ditionally, we investigate the impact of δ on the epidemic prevalence in Fig. 5. We
illustrate the total infection density ρ = ρi(∞) + ρj (∞) in view of the superinfec-
tion rate δ under the different parameter cases. With δ increasing, it can be seen that ρ

decreases with δ, which implies that the epidemic disease can be inhibited by super-
infection (superinfection is directed from the higher reproductive number to the lower
reproductive number). Although this has not been rigorously justified in theory, it is
interesting to uncover the biological implication of superinfection in diseases such as
gonorrhea.
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4 Conclusions and Discussions

The study of a superinfection process in networked epidemic systems has implica-
tions concerning our understanding of worldwide virus diversity, individual immu-
nity (Pastor-Satorras and Vespignani 2002) and disease progression, and vaccine de-
velopment. For many diseases whose causative agents are represented by multiple
strains, the protection offered by a vaccine is only partial and may be only effective
against some strains (Thomasey and Martcheva 2008). Hence, whether the vaccine
preventable strains spread is an important issue. In this work, we investigate the role
of the superinfection rate δ on the epidemic spreading, particularly for two forms of
strain dynamical behaviors: strain coexistence and strain replacement.

Based on the knowledge of two competing strains we proposed and studied math-
ematical models of the dynamical behavior of such systems. The mathematical mod-
els are a set of ordinary differential equations (Masuda and Konno 2006). Under the
assumption (H), we not only determine the positive coexistence threshold δ′

c above
which the two strains can coexist, but also establish the positive replacement thresh-
old δc which may be larger than δ′

c (see Fig. 3). According to the parameter classifica-
tions in Sect. 2, we can find that strain I can coexist with strain J even if it has a lower
basic reproductive number (i.e., R1 < R2). Most strikingly, it can allow strain I to
persist even when its reproductive number is less than 1 (i.e., R1 < 1 < R2) (Vasco
et al. 2007). These mathematical results have been justified by extensive simulations
in Sect. 3. In addition, we have confirmed the potential existence of the bi-stable state
in theory.

In this theoretical analysis, we adopted the linear stability analysis of all simple
equilibria (including E0, EI and EJ ) to study the conditions of strain coexistence
and strain replacement. As stressed by Masuda and Konno (2006), it is a vital prob-
lem to give the rigorous proof of the global stability of the steady states, especially
the endemic equilibrium. However, it seems difficult to solve by current methods
(d’Onofrio 2008; Wang and Dai 2008). So future work is still needed to rigorously
establish these results. Moreover, we did not consider the coinfection between two
strains which allows two strains to coexist in the same host. The previous results have
shown that coinfection can induce complex dynamic behavior, such as oscillations
and chaotic attractors (Kamo and Sasaki 2002). Recently, a generalized framework
of modeling interaction dynamics between two strains in a single host population has
been developed (Vasco et al. 2007; Shrestha et al. 2011). Based on these work, our
results may be extended to these complex dynamical cases.
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