Skip to main content
Log in

Dynamics of a Two-Prey One-Predator System in Random Environments

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we propose and investigate a stochastic two-prey one-predator model. Firstly, under some simple assumptions, we show that for each species x i , i=1,2,3, there is a π i which is represented by the coefficients of the model. If π i <1, then x i goes to extinction (i.e., lim t→+∞ x i (t)=0); if π i >1, then x i is stable in the mean (i.e., \(\lim_{t\rightarrow+\infty}t^{-1} \int_{0}^{t}x_{i}(s)\,\mathrm {d}s=\mbox{a positive constant}\)). Secondly, we prove that there is a stationary distribution to this model and it has the ergodic property. Thirdly, we establish the sufficient conditions for global asymptotic stability of the positive solution. Finally, we introduce some numerical simulations to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad, S., Lazer, A.C.: Average conditions for global asymptotic stability in a nonautonomous Lotka–Volterra system. Nonlinear Anal. 40, 37–49 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Ahmad, S., Stamova, I.M.: Almost necessary and sufficient conditions for survival of species. Nonlinear Anal. 5, 219–229 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Bahar, A., Mao, X.: Stochastic delay population dynamics. Int. J. Pure Appl. Math. 11, 377–400 (2004)

    MathSciNet  MATH  Google Scholar 

  • Barbalat, I.: Systems d’equations differentielles d’oscillations nonlineaires. Rev. Roum. Math. Pures Appl. 4, 267–270 (1959)

    MathSciNet  MATH  Google Scholar 

  • Beddington, J.R., May, R.M.: Harvesting natural populations in a randomly fluctuating environment. Science 197, 463–465 (1977)

    Article  Google Scholar 

  • Braumann, C.A.: Itô versus Stratonovich calculus in random population growth. Math. Biosci. 206, 81–107 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, L., Chen, J.: Nonlinear Biological Dynamical System. Science Press, Beijing (1993)

    Google Scholar 

  • Cheng, S.: Stochastic population systems. Stoch. Anal. Appl. 27, 854–874 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Feng, W.: Coexistence, stability, and limiting behavior in a one-predator–two-prey model. J. Math. Anal. Appl. 179, 592–609 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Freedman, H., Waltman, P.: Mathematical analysis of some three-species food-chain models. Math. Biosci. 33, 257–276 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Freedman, H., Waltman, P.: Persistence in models of three interacting predator–prey populations. Math. Biosci. 68, 213–231 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Gard, T.: Introduction to Stochastic Differential Equations. Dekker, New York (1988)

    MATH  Google Scholar 

  • Has’minskii, R.: Stochastic Stability of Differential Equations. Sijthoff & Noordhoff, Alphen aan den Rijn (1980)

    Book  Google Scholar 

  • Higham, D.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Hu, G., Wang, K.: The estimation of probability distribution of SDE by only one sample trajectory. Comput. Math. Appl. 62, 1798–1806 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Hutson, V., Vickers, G.: A criterion for permanent co-existence of species, with an application to a two-prey one-predator system. Math. Biosci. 63, 253–269 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, D., Shi, N., Li, X.: Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation. J. Math. Anal. Appl. 340, 588–597 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, D., Ji, C., Li, X., O’Regan, D.: Analysis of autonomous Lotka–Volterra competition systems with random perturbation. J. Math. Anal. Appl. 390, 582–595 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Springer, Berlin (1991)

    MATH  Google Scholar 

  • Li, X., Mao, X.: Population dynamical behavior of non-autonomous Lotka–Volterra competitive system with random perturbation. Discrete Contin. Dyn. Syst. 24, 523–545 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, X., Gray, A., Jiang, D., Mao, X.: Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching. J. Math. Anal. Appl. 376, 11–28 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, M., Wang, K.: Survival analysis of a stochastic cooperation system in a polluted environment. J. Biol. Syst. 19, 183–204 (2011)

    Article  MATH  Google Scholar 

  • Liu, M., Wang, K., Wu, Q.: Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle. Bull. Math. Biol. 73, 1969–2012 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Luo, Q., Mao, X.: Stochastic population dynamics under regime switching II. J. Math. Anal. Appl. 355, 577–593 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Øsendal, B.: Stochastic Differential Equations: An Introduction with Applications, 6th edn. Springer, Berlin (2003)

    Book  Google Scholar 

  • Sridhara, R., Watson, R.: Stochastic three species systems. J. Math. Biol. 28, 595–607 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Strang, G.: Linear Algebra and Its Applications. Thomson Learning, New York (1988)

    Google Scholar 

  • Takeuchi, Y., Adachi, N.: Existence of bifurcation of stable equilibrium in two-prey, one-predator communities. Bull. Math. Biol. 45, 877–900 (1983)

    MathSciNet  MATH  Google Scholar 

  • Ton, T.V.: Survival of three species in a nonautonomous Lotka–Volterra system. J. Math. Anal. Appl. 362, 427–437 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Vance, R.: Predation and resource partitioning in one predator–two prey model communities. Am. Nat. 112, 797–813 (1978)

    Article  Google Scholar 

  • Zhu, C., Yin, G.: Asymptotic properties of hybrid diffusion systems. SIAM J. Control Optim. 46, 1155–1179 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, C., Yin, G.: On hybrid competitive Lotka–Volterra ecosystems. Nonlinear Anal. 71, e1370–e1379 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the editors and reviewers for their important and valuable comments. Authors were supported by the NSFC of P.R. China (Nos. 11171081 and 11171056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Liu.

Additional information

Communicated by P.K. Maini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Wang, K. Dynamics of a Two-Prey One-Predator System in Random Environments. J Nonlinear Sci 23, 751–775 (2013). https://doi.org/10.1007/s00332-013-9167-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-013-9167-4

Keywords

Mathematics Subject Classification (2010)

Navigation