Skip to main content
Log in

Blending Modified Gaussian Closure and Non-Gaussian Reduced Subspace Methods for Turbulent Dynamical Systems

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Turbulent dynamical systems are characterized by persistent instabilities which are balanced by nonlinear dynamics that continuously transfer energy to the stable modes. To model this complex statistical equilibrium in the context of uncertainty quantification all dynamical components (unstable modes, nonlinear energy transfers, and stable modes) are equally crucial. Thus, order-reduction methods present important limitations. On the other hand uncertainty quantification methods based on the tuning of the non-linear energy fluxes using steady-state information (such as the modified quasilinear Gaussian (MQG) closure) may present discrepancies in extreme excitation scenarios. In this paper we derive a blended framework that links inexpensive second-order uncertainty quantification schemes that model the full space (such as MQG) with high order statistical models in specific reduced-order subspaces. The coupling occurs in the energy transfer level by (i) correcting the nonlinear energy fluxes in the full space using reduced subspace statistics, and (ii) by modifying the reduced-order equations in the subspace using information from the full space model. The results are illustrated in two strongly unstable systems under extreme excitations. The blended method allows for the correct prediction of the second-order statistics in the full space and also the correct modeling of the higher-order statistics in reduced-order subspaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • DelSole, T.: Stochastic models of quasigeostrophic turbulence. Surv. Geophys. 25, 107–149 (2004)

    Article  Google Scholar 

  • Holmes, P., Lumley, J., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  • Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  • Lall, S., Marsden, J.E., Glavaski, S.: A subspace approach to balanced truncation for model reduction of nonlinear control systems. Int. J. Robust Nonlinear Control 12, 519 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Lorenz, E.: Predictability—a problem partly solved. In: Proceedings on Predictability, ECMWF, September, pp. 1–18 (1996)

    Google Scholar 

  • Lorenz, E.N., Emanuel, K.A.: Optimal sites for supplementary weather observations: simulations with a small model. J. Atmos. Sci. 55, 399–414 (1998)

    Article  Google Scholar 

  • Ma, Z., Rowley, C.W., Tadmor, G.: Snapshot-based balanced truncation for linear time-periodic systems. IEEE Trans. Autom. Control 55, 469 (2010)

    Article  MathSciNet  Google Scholar 

  • Majda, A.J., Harlim, J.: Filtering Complex Turbulent Systems. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  • Majda, A.J., Timofeyev, I., Vanden-Eijnden, E.: Models for stochastic climate prediction. Proc. Natl. Acad. Sci. 96, 14687 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Majda, A.J., Timofeyev, I., Vanden-Eijnden, E.: A mathematical framework for stochastic climate models. Commun. Pure Appl. Math. 54, 891 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Majda, A.J., Timofeyev, I., Vanden-Eijnden, E.: A priori tests of a stochastic mode reduction strategy. Physica D 170, 206 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Majda, A.J., Abramov, R.V., Grote, M.J.: Information Theory and Stochastics for Multiscale Nonlinear Systems. CRM Monograph Series, vol. 25. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  • Majda, A.J., Gershgorin, B., Yuan, Y.: Low-frequency climate response and fluctuation-dissipation theorems: theory and practice. J. Atmos. Sci. 67, 1186–1201 (2010)

    Article  Google Scholar 

  • Marcinkiewicz, J.: Sur une propriete de la Loi de Gauss. Math. Z. 44, 612 (1938)

    Article  MathSciNet  Google Scholar 

  • Moyal, J.E.: Stochastic processes and statistical physics. J. R. Stat. Soc. B 11, 150 (1949)

    MathSciNet  MATH  Google Scholar 

  • Pawula, R.F.: Approximation of the linear Boltzmann equation by the Fokker-Planck equation. Phys. Rev. 162, 186 (1967)

    Article  Google Scholar 

  • Sapsis, T.P.: Attractor local dimensionality, nonlinear energy transfers, and finite-time instabilities in unstable dynamical systems with applications to 2D fluid flows. Proc. R. Soc. A 469, 20120550 (2013)

    Article  MathSciNet  Google Scholar 

  • Sapsis, T.P., Lermusiaux, P.F.J.: Dynamically orthogonal field equations for continuous stochastic dynamical systems. Physica D 238, 2347–2360 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Sapsis, T.P., Lermusiaux, P.F.J.: Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty. Physica D 241, 60 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Sapsis, T.P., Majda, A.J.: Blended reduced subspace algorithms for uncertainty quantification of quadratic systems with a stable mean state. Physica D (2013a). doi:10.1016/j.physd.2013.05.004

    Google Scholar 

  • Sapsis, T.P., Majda, A.J.: A statistically accurate modified quasilinear Gaussian closure for uncertainty quantification in turbulent dynamical systems. Physica D 252, 34–45 (2013b)

    Article  MathSciNet  Google Scholar 

  • Sirovich, L.: Turbulence and the dynamics of coherent structures, parts I, II and III. Q. Appl. Math. XLV, 561–590 (1987)

    MathSciNet  Google Scholar 

  • Ueckermann, M.P., Lermusiaux, P.F.J., Sapsis, T.P.: Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows. J. Comput. Phys. 233, 272–294 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for useful comments and suggestions. The research of A. Majda is partially supported by NSF grant DMS-0456713, NSF CMG grant DMS-1025468, and ONR grants ONR-DRI N00014-10-1-0554, N00014-11-1-0306, and ONR-MURI N00014-12-1-0912. T. Sapsis is supported as postdoctoral fellow by the first and third grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Themistoklis P. Sapsis.

Additional information

Communicated by A. Stuart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sapsis, T.P., Majda, A.J. Blending Modified Gaussian Closure and Non-Gaussian Reduced Subspace Methods for Turbulent Dynamical Systems. J Nonlinear Sci 23, 1039–1071 (2013). https://doi.org/10.1007/s00332-013-9178-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-013-9178-1

Keywords

Mathematics Subject Classification