Skip to main content
Log in

Stationary Solutions of the Vlasov–Poisson System with Diffusive Boundary Conditions

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The stationary solutions of the Vlasov–Poisson system for a plasma are studied with general diffusive boundary conditions. The distribution function \(f(x,v)\), which depends on the local energy and angular momentum, is determined uniquely under certain integrability and decay assumptions on the diffusive kernels and the particle injection intensities. The resulting nonlinear Poisson equation is then solved for the electric potential \(\phi (x)\). We study the existence and uniqueness of its solutions in one and higher dimensions under a variety of settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdallah, B., Dolbeault, J.: Relative entropies for kinetic equations in bounded domains (irreversibility, stationary solutions, uniqueness. Arch. Ration. Mech. Anal. 168, 253–298 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Amann, H.: Fixed point equations and non-linear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18, 620–709 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  • Babovsky, H.: Diffusion limits for flows in thin layers. SIAM J. Appl. Math. 56, 1280–1295 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Bardos, C., Degond, P.: Global existence for the Vlasov–Poisson system in 3 space variables with small initial data. Ann. Inst. Henri Poincare Anal Non Lineaire 2, 101–118 (1985)

    MATH  MathSciNet  Google Scholar 

  • Batt, J.: Global symmetric solutions of the initial value problem of stellar dynamics. J. Differ. Equ. 25, 342–364 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  • Batt, J.: Stationary solutions of the relativistic Vlasov–Maxwell system of plasma physics. Chin. Ann. Math. 4B, 253–278 (1993)

    MathSciNet  Google Scholar 

  • Chen, X., Strauss, W.: Approach to equilibrium of a body colliding specularly and diffusely with a sea of particles. Arch. Ration. Mech. Anal. 211(3), 879–910 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  • Crandall, M., Rabinowitz, P.: Bifurcation from a simple eigenvalue. J. Funct. Anal. 8, 321–340 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  • Greengard, C., Raviart, P.-A.: A boundary-value problem for the stationary Vlasov–Poisson equations: the plane diode. Commun. Pure Appl. Math. 43, 473–507 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Granas, A.: Boundary value problems on infinite intervals and semiconductor devices. J. Math. Anal. Appl. 116, 335–348 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Guo, Y.: Global weak solutions of the Vlasov–Maxwell system with boundary conditions. Commun. Math. Phys 174, 245–263 (1993)

    Article  Google Scholar 

  • Guo, Y.: Singular solutions of the 1-d Vlasov–Maxwell system on a half line. Arch. Ration. Mech. Anal 131, 241–304 (1995)

    Article  MATH  Google Scholar 

  • Guo, Y.: Regularity of the Vlasov equations in a half space. Indiana. Math. J. 43, 255–320 (1994)

    Article  MATH  Google Scholar 

  • Hwang, H.J.: Regularity for the Vlasov–Poisson system in a convex bounded domain. SIAM J. Math. Anal. 36, 121–171 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Hwang, H.J., Velazquez, J.: Global existence for the Vlasov–Poisson system in bounded domains. Arch. Ration. Mech. Anal. 195(3), 763–796 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Hwang, H.J., Velazquez, J.: On global existence for the Vlasov–Poisson system in a half space. J. Differ. Equ. 247(6), 1915–1948 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Kielhofer, H.: Bifurcation theory: An Introduction with Applications to PDEs. Springer (2003)

  • Lions, P.L., Perthame, B.: Propagation of moments and regularity of solutions for the 3-dimensional Vlasov–Poisson system. Invent. Math. 105, 415–430 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • Noussair, E.: On the existence of solutions of non linear elliptic boundary value problems. J. Differ. Equ. 34, 482–495 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  • Pfaffelmoser, K.: Global classical solutions of Vlasov–Poisson system in three dimensions for arbitrary general data. J. Differ. Equ. 95, 281–303 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Poupaud, F.: Boundary value problems for the stationary Vlasov–Maxwell system. Forum Math. 4, 499–527 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Rabinowitz, P.: Some global results in non-linear eigen value problems. J. Funct. Anal. 7, 487–513 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  • Rein, G.: Existence of stationary, collisionless plasmas in bounded domains. Math. Methods Appl. Sci. 15, 365–374 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The first author is supported by Pohang Mathematics Institute through the Basic Science Research Program (2013047640) of the National Research Foundation of Korea (NRF). He was also supported by ICERM at Brown University in the semester program on Kinetic Theory and Computation. The second author is partly supported by the Basic Science Research Program (2010-0008127) and (2013047640) through the National Research Foundation of Korea (NRF). The research of the third author is partly supported by NSF grant DMS-1007960.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Esentürk.

Additional information

Communicated by Robert V. Kohn.

Appendix

Appendix

Theorem 8

(Noussair 1979) Let \(\Omega _{n}\), \(n=1,2...\) be a sequence of bounded open sets in \({\mathbb {R}}^{N}\) with boundaries \(\partial \Omega _{n}\) of class \(C^{2+\alpha }\), \(\alpha \in (0,1)\) such that \(\Omega _{n}\subset \Omega _{n+1}\subset \Omega \) for all \(n\), \(\cup _{n=1}^{\infty }\Omega _{n}=\Omega \) and for each \(x\in \partial \Omega \), \(\left| x\right| \le n\) implies \(x\in \partial \Omega _{n}\). Suppose that the boundary value problems

$$\begin{aligned} -L\phi ^{*}&\ge g(\phi ^{*})\text { in }\Omega ,\quad \phi ^{*}\ge c\text { on }\partial \Omega \text {,}\nonumber \\ -L\phi _{*}&\le g(\phi _{*})\text { in }\Omega ,\quad \phi _{*}\le c\text { on }\partial \Omega , \end{aligned}$$
(5.1)

have solutions \(\phi ^{*},\phi _{*}\in C^{\alpha }(\Omega )\), where \(L\) is a uniformly elliptic operator, \(c\) is a constant number. Further assume that \(g\) is a function in \(C^{\alpha }([a,b])\) \((\alpha \in (0,1))\,(-\infty <a<b<\infty )\) and \(g(t_{1})-g(t_{2})\ge -D(t_{1}-t_{2})\) holds for all \(a\le t_{2}\le t_{1}\le b\) and some constant \(D>0\). Then, the boundary value problem

$$\begin{aligned} L\phi =g(\phi )\text { in }\Omega ,\ \ \phi =c\;on\;\partial \Omega , \end{aligned}$$

has a solution \(\phi \in C^{\alpha }(\Omega )\) satisfying \(\phi _{*}\le \phi \le \phi ^{*}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esentürk, E., Hwang, H.J. & Strauss, W.A. Stationary Solutions of the Vlasov–Poisson System with Diffusive Boundary Conditions. J Nonlinear Sci 25, 315–342 (2015). https://doi.org/10.1007/s00332-015-9231-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-015-9231-3

Keywords

Mathematics Subject Classification

Navigation