Skip to main content
Log in

Heteroclinic Networks in Homogeneous and Heterogeneous Identical Cell Systems

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We prove results that enable realization of heteroclinic networks in coupled homogeneous and heterogeneous systems of identical cells. We also consider various models for network dynamics, which allow variation in the number of inputs to identical cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Interest has continued since that time notwithstanding the authors remark that ‘Biologically, the behaviour illustrated in Figs. 4 and 5 is nonsense’.

  2. We allow either asymmetric or symmetric inputs.

  3. Strictly speaking, unique if \(j_i:\mathbf {k_i}\rightarrow \varvec{\ell }\) is injective, \(i \in \varvec{\ell }\).

  4. We do not discuss the issue of spike amplification that can occur in pyramidal neurons in the hypo-campus Fricker and Miles (2000)—this can be modelled using a non-autonomous version of additive input structure that depends on relative timings.

  5. We review the methods used in Aguiar et al. (2011) when we address the general case.

References

  • Abeles, M., Bergman, H., Gat, I., Meilijson, I., Seidmann, E., Tishby, M.: Cortical activity flips among quasi-stationary states. PNAS 92, 8616–8620 (1995)

    Article  Google Scholar 

  • Afraimovich, V.S., Rabinovich, M.I., Varona, P.: Heteroclinic contours in neural ensembles and the winnerless competition principle. Inter. J. Bifur. Chaos 14, 1195–1208 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Afraimovich, V.S., Zhigulin, V.P., Rabinovich, M.I.: On the origin of reproducible sequential activity in neural circuits. Chaos 14(4), 1123–1129 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Agarwal, N., Field, M.: Dynamical equivalence of networks of coupled dynamical systems I: asymmetric inputs. Nonlinearity 23, 1245–1268 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Agarwal, N., Field, M.: Dynamical equivalence of networks of coupled dynamical systems II: general case. Nonlinearity 23, 1269–1289 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Aguiar, M.A.D., Ashwin, P., Dias, A., Field, M.: Dynamics of coupled cell networks: synchrony, heteroclinic cycles and inflation. J. Nonlinear Sci. 21(2), 271–323 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Aguiar, M.A.D., Castro, S.B.S.D., Labouriau, I.S.: Dynamics near a heteroclinic network. Nonlinearity 18(1), 391–414 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Ashwin, P., Borresen, J.: Discrete computation using a perturbed heteroclinic network. Phys. Rev. E 70, 026203 (2004)

    Article  MathSciNet  Google Scholar 

  • Ashwin, P., Burylko, O., Maistrenko, Y.: Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators. Phys. D 237(4), 454–466 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Ashwin, P., Orosz, G., Borresen, J.: Heteroclinic switching in coupled oscillator networks: dynamics on odd graphs. In: Moura, A., Károlyi, G. (eds.) Nonlinear Dynamics and Chaos: Advances and Perspectives, Understanding Complex Systems, M Thiel, J Kurths, M C Romano, pp. 31–50. Springer, New York (2010)

    Chapter  Google Scholar 

  • Ashwin, P., Orosz, G., Wordsworth, J., Townley, S.: Reliable switching between cluster states for globally coupled phase oscillators. SIAM J. Appl. Dyn. Syst. 6, 728–758 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Ashwin, P., Field, M.: Heteroclinic networks in coupled cell systems. Arch. Rational Mech. Anal. 148, 107–143 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Ashwin, P., Postlethwaite, C.M.: On designing heteroclinic networks from graphs. Phys. D 265, 26–39 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Ashwin, P., Swift, J.W.: The dynamics of \(n\) weakly coupled identical oscillators. J. Nonlinear Sci. 2, 69–108 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Bick, C., Field, M.J.: Asynchronous Networks and Event Driven Dynamics. Preprint (2015)

  • Chi, C.-W., Hsu, S.-B., L-I, Wu: On the asymmetric May-Leonard model of three competing species. SIAM J. Appl. Math. 58, 211–226 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Dias, A.P.S., Dionne, B., Stewart, I.: Heteroclinic cycles and wreath product symmetries. Dyn. Stab. Syst. 15, 353–385 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Dias, A.P.S., Stewart, I.: Linear equivalence and ODE-equivalence for coupled cell networks. Nonlinearity 18, 1003–1020 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Dörfler, F., Bullo, F.: Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators. SIAM J. Control Optim. 50(3), 1616–1642 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. PNAS 110(6), 2005–2010 (2013)

    Article  Google Scholar 

  • dos Reis, G.L.: Structural stability of equivariant vector fields on two manifolds. Trans. Am. Math. Soc. 283, 633–643 (1984)

    Article  MATH  Google Scholar 

  • Duffing, G.: Erzwungene Schwingungen bei ver Anderlicher Eigenfrequenz und Ihre Technische Bedeutung. Verlag Friedr Vieweg & Sohn, Braunschweig (1918)

    Google Scholar 

  • Field, M.J.: Equivariant dynamical systems. Bull. Amer. Math. Soc. 76, 1314–1318 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  • Field, M.J.: Transversality in \(G\)-manifolds. Trans. Am. Math. Soc. 231, 429–450 (1977)

    MATH  MathSciNet  Google Scholar 

  • Field, M.J.: Equivariant dynamical systems. Trans. Am. Math. Soc. 259(1), 185–205 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  • Field, M.J., Richardson, R.W.: Symmetry breaking and branching patterns in equivariant bifurcation theory II. Arch. Rational Mech. Anal. 120, 147–190 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Field, M.J.: Dynamics, bifurcation and symmetry. Pitman Res. Notes Math. 356 (1996)

  • Field, M.J.: Combinatorial dynamics. Dyn. Syst. 19, 217–243 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Field, M.J.: Unpublished notes and talks given in 2005 on Heteroclinic cycles and coupled cell systems (talks accessible at URL www.math.rice.edu/~mjf8/research/networks/SLF) (2005)

  • Field, M.J.: Dynamics and symmetry (Imperial College Press Advanced Texts in Mathematics, Vol. 3) (2007)

  • Filatrella, G., Nielsen, A.H., Pederson, N.F.: Analysis of a power grid using a Kuramoto-like model. Eur. Phys. J. B 61, 485 (2008)

    Article  Google Scholar 

  • Fricker, D., Miles, R.: EPSP amplification and the precision of spike timing in Hippocampal Neurons. Neuron 28, 559–569 (2000)

    Article  Google Scholar 

  • Golubitsky, M., Pivato, M., Stewart, I.: Interior symmetry and local bifurcation in coupled cell networks. Dyn. Syst. 19, 389–407 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Golubitsky, M., Stewart, I.: Nonlinear dynamics of networks: the groupoid formalism. Bull. Am. Math. Soc. 43, 305–364 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Golubitsky, M., Stewart, I., Török, A.: Patterns of synchrony in coupled cell networks with multiple arrows. SIAM J. Appl. Dyn. Sys. 4(1), 78–100 (2005)

    Article  MATH  Google Scholar 

  • Hansel, D., Mato, G., Meunier, C.: Phase dynamics for weakly coupled Hodgkin-Huxley neurons. Europhys Letts 23, 367–372 (1993)

    Article  Google Scholar 

  • Hansel, D., Mato, G., Meunier, C.: Clustering and slow switching in globally coupled phase oscillators’. Phys. Rev. E 48(5), 3470–3477 (1993)

    Article  Google Scholar 

  • Hansel, D., Mato, G., Meunier, C.: Phase dynamics for weakly coupled Hodgkin-Huxley neurons. Europhys Letts 23, 367–372 (1993)

    Article  Google Scholar 

  • Hofbauer, J.: Heteroclinic cycles on the simplex. Proceedings of the International Conference on Nonlinear Oscillations, Janos Bolyai Mathametical Society Budapest (1987)

  • Hofbauer, J.: Heteroclinic cycles in ecological differential equations. Tatra Mt. Math. Publ. 4, 105–116 (1994)

    MATH  MathSciNet  Google Scholar 

  • Hofbauer, J., Sigmund, K.: The Theory of Evolution and Dynamical Systems. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  • Hofbauer, J., Sigmund, K.: Evolutionary Games and Replicator Dynamics. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  • Homburg, A.J., Knobloch, J.: Switching homoclinic networks. Dyn. Syst. 25(3), 351–358 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Kirk, V., Lane, E., Postlethwaite, C.M., Rucklidge, A.M., Silber, M.: A mechanism for switching near a heteroclinic network. Dyn. Syst. Int. J. 25(3), 323–349 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Kiss, I., Rusin, C., Kori, H., Hudson, J.: Engineering complex dynamical structures: sequential patterns and desynchronization. Science 316, 1886–1889 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Kirk, V., Silber, M.: A competition between heteroclinic cycles. Nonlinearity 7(6), 1605–1622 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Krupa, M.: Robust heteroclinic cycles. J. Nonlinear Sci. 7, 129–176 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Krupa, M., Melbourne, I.: Asymptotic stability of heteroclinic cycles in systems with symmetry. Ergod. Th. Dyn. Sys. 15, 121–147 (1995)

    MATH  MathSciNet  Google Scholar 

  • Krupa, M., Melbourne, I.: Asymptotic stability of heteroclinic cycles in systems with symmetry, II. Proc. R. Soc. Edinburgh A 134A, 1177–1197 (2004)

    Article  MathSciNet  Google Scholar 

  • Lin, K.K., Young, L.-S.: Shear-induced chaos. Nonlinearity 21, 899–922 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • May, R.M., Leonard, W.J.: Nonlinear aspects of competition between three species. SIAM J. Appl. Math. 29, 243–253 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  • Melbourne, I., Chossat, P., Golubitsky, M.: Heteroclinic cycles involving periodic solutions in mode interactions with \(O(2)\) symmetry. Proc. R. Soc. Edinburgh 113A, 315–345 (1989)

    Article  MathSciNet  Google Scholar 

  • Memmesheimer, R.-M., Timme, M.: Designing the dynamics of spiking neural networks. Phys. Rev. Letts. 97, 188101 (2006)

    Article  Google Scholar 

  • Mohapatra, A., Ott, W.: Homoclinic loops, heteroclinic cycles and rank one dynamics. SIAM J. Appl. Dyn. Sys. 14(1), 107–131 (2015)

  • Neves, F.S., Timme, M.: Controlled perturbation-induced switching in pulse-coupled oscillator networks. J. Phys. A Math. Theor. 42, 345103 (2009)

    Article  MathSciNet  Google Scholar 

  • Neves, F.S., Timme, M.: Computation by switching in complex networks. Phy. Rev. Lett. 109, 751–811 (2012)

    Google Scholar 

  • Nowotny, T., Rabinovich, M.: Dynamical origin of independent spiking and bursting activity in neural microcircuits. Phys. Rev. Letts 98, 128106 (2007)

    Article  Google Scholar 

  • Orosz, G., Moehlis, J., Ashwin, P.: Designing the dynamics of globally coupled oscillators. Prog. Theoret. Phys. 122(3), 611–630 (2009)

    Article  MATH  Google Scholar 

  • Peixoto, M.M.: On an approximation theorem of Kupka and Smale. J. Diff. Eqn. 3, 214–227 (1966)

    Article  MathSciNet  Google Scholar 

  • Rabinovich, M., Huerta, R., Laurent, G.: Transient dynamics for neural processing. Science 321, 48–50 (2008)

    Article  Google Scholar 

  • Rabinovich, M., Volkovskii, A., Lecanda, P., Huerta, R., Abarbanel, H.D.I., Laurent, G.: Dynamical encoding by networks of competing neuron groups: winnerless competition. Phys. Rev Lett 8706(8102), 141–149 (2001)

    Google Scholar 

  • Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Phys. Rev. Lett. 109(6), 064101 (2012)

  • Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V., Chua, L.O.: Methods of Qualitative Theory in i Nonlinear Dynamics, Part 1. World Scientific, Singapore (1998)

    Book  Google Scholar 

  • Shilnikov, A.L., Turaev, D.V., Chua, L.O., Shilnikov, L.P.: Methods of Qualitative Theory in Nonlinear Dynamics, Part 2. World Scientific, Singapore (2002)

    Google Scholar 

  • Stewart, I., Golubitsky, M., Pivato, M.: Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM J. Appl. Dyn. Sys. 2(4), 606–646 (2003)

    Article  MathSciNet  Google Scholar 

  • Wang, Q., Ott, W.: Dissipative homoclinic loops of two-dimensional maps and strange attractors with one direction of instability. Comm. Pure Appl. Math. 64, 1439–1496 (2011)

    MATH  MathSciNet  Google Scholar 

  • Wang, Q., Young, L.-S.: Strange attractors in periodically-kicked limit cycles and Hopf bifurcations. Comm. Math. Phys. 240, 509–529 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Peter Ashwin for helpful comments on preliminary drafts of the paper and the referees for their remarks and questions which have led to clarifications and improvements in the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Field.

Additional information

Communicated by Paul Newton.

Research supported in part by NSF Grant DMS-1265253 and Marie Curie IIF Fellowship (Project 627590).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Field, M.J. Heteroclinic Networks in Homogeneous and Heterogeneous Identical Cell Systems. J Nonlinear Sci 25, 779–813 (2015). https://doi.org/10.1007/s00332-015-9241-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-015-9241-1

Keywords

Mathematics Subject Classification

Navigation