Skip to main content
Log in

Noose Structure and Bifurcations of Periodic Orbits in Reversible Three-Dimensional Piecewise Linear Differential Systems

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The main goal of this work is to describe the periodic behavior of a class of three-dimensional reversible piecewise linear continuous systems. More concretely, we study an interesting structure called the noose bifurcation that was previously detected by Kent and Elgin in the Michelson system. We numerically obtain the curves of periodic orbits that appear from the bifurcations at the noose curve, where other phenomena related to different types of tangencies with the separation plane arise. Besides that, we show that some of these curves of periodic orbits wiggle around global connections when the period increases. The complete structure of periodic orbits, including the stability and bifurcations, coincides with the one observed in the Michelson system. However, we also point out the relevance of the crossing tangency and the small loop that emerges from it in the existence of the noose bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Algaba, A., Freire, E., Gamero, E., Rodríguez-Luis, A.J.: Resonances of periodic orbits in Rössler system in presence of a triple-zero bifurcation. Int. J. Bifurc. Chaos Appl. Sci. Eng. 17, 1997–2008 (2007)

    Article  MATH  Google Scholar 

  • Allgower, E.L., Georg, K.: Numerical Continuation Methods: An Introduction. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  • Andronov, A., Vitt, A., Khaikin, S.: Theory of Oscillators. Pergamon Press, Oxford (1966)

    MATH  Google Scholar 

  • Arneodo, A., Coullet, P., Tresser, C.: Oscillators with chaotic behavior: an illustration of a theorem by Shil’nikov. J. Stat. Phys. 27, 171–182 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  • Carmona, V., Freire, E., Ponce, E., Torres, F.: The continuous matching of two stable linear systems can be unstable. Discrete Contin. Dyn. Syst. 16, 689–703 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Carmona, V., Fernández-Sánchez, F., Teruel, A.E.: Existence of a reversible T-point heteroclinic cycle in a piecewise linear version of the Michelson system. SIAM J. Appl. Dyn. Syst. 7, 1032–1048 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Carmona, V., Fernández-Sánchez, F., García-Medina, E., Teruel, A.E.: Existence of homoclinic connections in continuous piecewise linear systems. Chaos 20, 013124, 8 (2010)

    Article  Google Scholar 

  • Carmona, V., Fernández-García, S., Fernández-Sánchez, F., García-Medina, E., Teruel, A.E.: Reversible periodic orbits in a class of 3D continuous piecewise linear systems of differential equations. Nonlinear Anal 75, 5866–5883 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Carmona, V., Fernández-García, S., Fernández-Sánchez, F., García-Medina, E., Teruel, A.E.: Noose bifurcation and crossing tangency in reversible piecewise linear systems. Nonlinearity 27, 585–606 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  • Freire, E., Ponce, E., Torres, F.: Hopf-like bifurcations in planar piecewise linear systems. Publ. Mat. 41, 135–148 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Glendinning, P., Sparrow, C.: Local and global behavior near homoclinic orbits. J. Stat. Phys. 35, 645–696 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  • Keller, H.B.: Numerical solution of bifurcation and nonlinear eigenvalue problems. In: Applications of Bifurcation Theory. Publ. Math. Res. Center No. 38. Academic Press, New York (1977)

  • Kent, P., Elgin, J.: Noose bifurcation of periodic orbits. Nonlinearity 4, 1045–1061 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • Kent, P., Elgin, J.: Travelling-waves of the Kuramoto-Sivashinsky equation: period-multiplying bifurcations. Nonlinearity 5, 899–919 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Kriegsmann, G.A.: The rapid bifurcation of the Wien bridge oscillator. IEEE Trans. Circuits Syst. 34, 1093–1096 (1987)

    Article  MathSciNet  Google Scholar 

  • Llibre, J., Teruel, A.E.: Existence of Poincaré maps in piecewise linear differential systems in \({\mathbb{R}}^{n}\). Int. J. Bifurc. Chaos Appl. Sci. Eng. 8, 2843–2851 (2004)

    Article  MathSciNet  Google Scholar 

  • Maggio, G.M., di Bernardo, M., Kennedy, M.P.: Nonsmooth bifurcations in a piecewise-linear model of the Colpitts oscillator. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47, 1160–1177 (2000)

    Article  MATH  Google Scholar 

  • Michelson, D.: Steady solutions of the Kuramoto-Sivashinsky equation. Phys. D 19, 89–111 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Pivka, L., Wu, C.W., Huang, A.: Lorenz equation and Chua’s equation. Int. J. Bifurc. Chaos Appl. Sci. Eng. 6, 2443–2489 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the Ministerio de Economía y Competitividad, Plan Nacional I+D+I cofinanced with FEDER funds, in the frame of the Projects MTM2009-07849, MTM2010-20907-C02-01, MTM2011-22751 and MTM2012-31821 and by the Consejería de Educación y Ciencia de la Junta de Andalucía (TIC-0130, P08-FQM-03770).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Carmona.

Additional information

Communicated by Paul Newton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carmona, V., Fernández-Sánchez, F., García-Medina, E. et al. Noose Structure and Bifurcations of Periodic Orbits in Reversible Three-Dimensional Piecewise Linear Differential Systems. J Nonlinear Sci 25, 1209–1224 (2015). https://doi.org/10.1007/s00332-015-9251-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-015-9251-z

Keywords

Mathematics Subject Classification

Navigation