Skip to main content
Log in

Spontaneous Flows in Suspensions of Active Cyclic Swimmers

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Many swimming cells rely on periodic deformations to achieve locomotion. We introduce in this work a theoretical model and numerical simulations in order to elucidate the impact of these cyclic strokes on the emergence of mesoscale structures and collective motion in swimmer suspensions. The model extends previous kinetic theories for populations of identical swimmers to the case of self-propelled particles undergoing transitions between pusher and puller states, and is applied to quantify how the unsteadiness of the hydrodynamic velocity field, to which each swimmer population contributes, affects the onset and characteristics of spontaneous flows. A linear stability analysis reveals that the sign of the population-averaged dipole determines the stability of the uniform isotropic state, with suspensions dominated by pushers being subject to growing nematic bend fluctuations. Stochastic transitions, however, are also seen to provide an additional damping mechanism. To investigate the population dynamics above the instability threshold, we also perform direct particle simulations based on a slender-body model, where the growth or decay of the active power generated by the swimmers is found to be a robust measure of the structural and dynamical instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baskaran, A., Marchetti, M. C.: Nonequilibrium statistical mechanics of self-propelled hard rods. J. Stat. Mech.: Theor. Exp. P04019 (2010)

  • Baskaran, A., Marchetti, M.C.: Statistical mechanics and hydrodynamics of bacterial suspensions. Proc. Natl. Acad. Sci. USA 106, 15567 (2009)

    Article  Google Scholar 

  • Bretherton, F.P.: The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14, 284 (1962)

    Article  MathSciNet  Google Scholar 

  • Bricard, A., Caussin, J.-B., Das, D., Savoie, C., Chikkadi, V., Shitara, K., Chepizhko, O., Peruani, F., Saintillan, D., Bartolo, D.: Emergent vortices in populations of colloidal rollers. Nature Comm. (2015, to appear)

  • Bricard, A., Caussin, J.-B., Desreumaux, N., Dauchot, N., Bartolo, D.L.: Emergence of macroscopic directed motion in populations of motile colloids. Nature 503, 95 (2013)

    Article  Google Scholar 

  • Cisneros, L.H., Kessler, J.O., Ganguly, S., Goldstein, R.E.: Dynamics of swimming bacteria: transition to directional order at high concentration. Phys. Rev. E 83, 061907 (2011)

    Article  Google Scholar 

  • Deseigne, J., Dauchot, O., Chaté, H.: Collective motion of vibrated polar disks. Phys. Rev. Lett. 105, 098001 (2010)

    Article  Google Scholar 

  • Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E., Kessler, J.O.: Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103 (2004)

    Article  Google Scholar 

  • Drescher, K., Goldstein, R.E., Michel, N., Polin, M., Tuval, I.: Direct measurement of the flow field around swimming microorganisms. Phys. Rev. Lett. 105, 168101 (2010)

    Article  Google Scholar 

  • Drescher, K., Dunkel, J., Cisneros, L.H., Ganguly, S., Goldstein, R.E.: Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering. Proc. Natl. Acad. Sci. USA 108, 10940 (2011)

    Article  MATH  Google Scholar 

  • Dunkel, J., Heidenreich, S., Drescher, K., Wensink, H.H., Bär, M., Goldstein, R.E.: Fluid dynamics of bacterial turbulence. Phys. Rev. Lett. 110, 228102 (2013)

    Article  Google Scholar 

  • Ezhilan, B., Shelley, M.J., Saintillan, D.: Instabilities and nonlinear dynamics of concentrated active suspensions. Phys. Fluids 25, 070607 (2013)

    Article  Google Scholar 

  • Fürthauer, S., Ramaswamy, S.: Phase-synchronized state of oriented active fluids. Phys. Rev. Lett. 111, 238102 (2013)

    Article  Google Scholar 

  • Gachelin, J., Miño, G., Berthet, H., Lindner, A., Rousselet, A., Clément, E.: Non-Newtonian viscosity of Escherichia coli suspensions. Phys. Rev. Lett. 110, 268103 (2013)

  • Gachelin, J., Rousselet, A., Lindner, A., Clément, E.: Collective motion in an active suspension of Escherichia coli bacteria. New J. Phys. 16, 025003 (2014)

    Article  Google Scholar 

  • Gao, T., Blackwell, R., Glaser, M.A., Betterton, M.D., Shelley, M.J.: Multiscale polar theory of microtubule and motor-protein assemblies. Phys. Rev. Lett. 114, 048101 (2015)

    Article  Google Scholar 

  • Goldstein, R.E.: Green algae as model organisms for biological fluid dynamics. Annu. Rev. Fluid Mech. 47, 353 (2015)

    Article  MATH  Google Scholar 

  • Guasto, J.S., Johnson, K.A., Gollub, J.P.: Oscillatory flows induced by microorganisms swimming in two dimensions. Phys. Rev. Lett. 105, 168102 (2010)

    Article  Google Scholar 

  • Hatwalne, Y., Ramaswamy, S., Rao, M., Aditi Simha, R.: Rheology of active-particle suspensions. Phys. Rev. Lett. 92, 118101 (2004)

    Article  Google Scholar 

  • Hernandez-Ortiz, J.P., Underhill, P.T., Graham, M.D.: Dynamics of confined suspensions of swimming particles. J. Phys. Condens. Matt. 21, 204107 (2009)

    Article  Google Scholar 

  • Hohenegger, C., Shelley, M.J.: Stability of active suspensions. Phys. Rev. E 81, 046311 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Keber, F.C., Loiseau, E., Sanchez, T., DeCamp, S.H., Giomi, L., Bowick, M.J., Marchetti, M.C., Dogic, Z., Bausch, A.R.: Topology and dynamics of active nematic vesicles. Science 345, 6201 (2014)

    Article  Google Scholar 

  • Koch, D.L., Subramanian, G.: Collective hydrodynamics of swimming microorganisms: living fluids. Annu. Rev. Fluid Mech. 43, 637 (2011)

    Article  MathSciNet  Google Scholar 

  • Kumar, N., Soni, H., Ramaswamy, S., Sood, A.K.: Flocking at a distance in active granular matter. Nature Comm. 5, 4688 (2014)

    Article  Google Scholar 

  • Leoni, M., Liverpool, T.B.: Synchronization and liquid crystalline order in soft active fluids. Phys. Rev. Lett. 112, 148104 (2014)

    Article  Google Scholar 

  • Marchetti, M.C., Joanny, J.F., Ramaswamy, R., Liverpool, T.B., Prost, J., Rao, M., Aditi Simha, R.: Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143 (2013)

    Article  Google Scholar 

  • Mussler, M., Rafaï, S., Peyla, P., Wagner, C.: Effective viscosity of non-gravitactic Chlamydomonas reinhardtii microswimmer suspensions. EPL 101, 54004 (2013)

    Article  Google Scholar 

  • Rafaï, S., Jibuti, L., Peyla, P.: Effective viscosity of microswimmer suspensions. Phys. Rev. Lett. 104, 098102 (2010)

    Article  MATH  Google Scholar 

  • Saintillan, D., Darve, E., Shaqfeh, E.S.G.: A smooth particle-mesh Ewald algorithm for Stokes suspension simulations: the sedimentation of rigid fibers. Phys. Fluids 17, 033301 (2005)

    Article  Google Scholar 

  • Saintillan, D.: The dilute rheology of swimming suspensions: a simple kinetic model. Exp. Mech. 50, 1275 (2010)

    Article  Google Scholar 

  • Saintillan, D., Shelley, M.J.: Orientational order and instabilities in suspensions of self-locomoting rods. Phys. Rev. Lett. 99, 058102 (2007)

    Article  MATH  Google Scholar 

  • Saintillan, D., Shelley, M.J.: Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum simulations. Phys. Rev. Lett. 100, 178103 (2008)

    Article  Google Scholar 

  • Saintillan, D., Shelley, M.J.: Instabilities, pattern formation, and mixing in active suspensions. Phys. Fluids 20, 123304 (2008)

    Article  Google Scholar 

  • Saintillan, D., Shelley, M.J.: Emergence of coherent structures and large-scale flows in motile suspensions. J. R. Soc. Interface 9, 571 (2012)

    Article  Google Scholar 

  • Saintillan, D., Shelley, M.J.: Active suspensions and their nonlinear models. C. R. Physique 14, 497 (2013)

    Article  Google Scholar 

  • Saintillan, D., Shelley, M.J.: Theory of active suspensions. In: Spagnolie, S.E. (ed.) Complex Fluids in Biological Systems: Experiment, Theory, and Computation, pp. 319–355. Springer, New York (2015)

    Google Scholar 

  • Sanchez, T., Chen, D.T., DeCamp, S.J., Heymann, M., Dogic, Z.: Spontaneous motion in hierarchically assembled active matter. Nature 491, 431 (2012)

    Article  MATH  Google Scholar 

  • Schaller, V., Weber, C., Semmrich, C., Frey, E., Bausch, A.R.: Polar patterns of driven filaments. Nature 467, 73 (2010)

    Article  Google Scholar 

  • Sokolov, A., Aranson, I.S.: Reduction of viscosity in suspension of swimming bacteria. Phys. Rev. Lett. 103, 148101 (2009)

    Article  Google Scholar 

  • Subramanian, G., Koch, D.L.: Critical bacterial concentration for the onset of collective swimming. J. Fluid Mech. 632, 359 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

D.S. gratefully acknowledges partial support from a Total-ESPCI ParisTech Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Saintillan.

Additional information

Communicated by Eva Kanso and David Saintillan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brotto, T., Bartolo, D. & Saintillan, D. Spontaneous Flows in Suspensions of Active Cyclic Swimmers. J Nonlinear Sci 25, 1125–1139 (2015). https://doi.org/10.1007/s00332-015-9261-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-015-9261-x

Keywords

Mathematics Subject Classification

Navigation