Skip to main content
Log in

On Noisy Extensions of Nonholonomic Constraints

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We propose several stochastic extensions of nonholonomic constraints for mechanical systems and study the effects on the dynamics and on the conservation laws. Our approach relies on a stochastic extension of the Lagrange–d’Alembert framework. The mechanical system we focus on is the example of a Routh sphere, i.e., a rolling unbalanced ball on the plane. We interpret the noise in the constraint as either a stochastic motion of the plane, random slip or roughness of the surface. Without the noise, this system possesses three integrals of motion: energy, Jellet and Routh. Depending on the nature of noise in the constraint, we show that either energy, or Jellet, or both integrals can be conserved, with probability 1. We also present some exact solutions for particular types of motion in terms of stochastic integrals. Next, for an arbitrary nonholonomic system, we consider two different ways of including stochasticity in the constraints. We show that when the noise preserves the linearity of the constraints, then energy is preserved. For other types of noise in the constraint, e.g., in the case of an affine noise, the energy is not conserved. We study in detail a class of Lagrangian mechanical systems on semidirect products of Lie groups, with “rolling ball type” constraints. We conclude with numerical simulations illustrating our theories, and some pedagogical examples of noise in constraints for other nonholonomic systems popular in the literature, such as the nonholonomic particle, the rolling disk and the Chaplygin sleigh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics, 2nd edn. Springer, Berlin/Heidelberg/New York (1997)

    MATH  Google Scholar 

  • Bates, L., Sniatycki, J.: Non-holonomic reduction. Rep. Math. Phys. 32, 99–115 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Bates, L., Graumann, H., MacDonnell, C.: Examples of gauge conservation laws in nonholonomic systems. Rep. Math. Phys. 37, 295–308 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Bismuth, J.-M.: Mécanique Aléatoire. Lecture Notes in Mathematics, vol. 866. Springer, Berlin (1981)

  • Bloch, A.M.: Nonholonomic Mechanics and Control, volume 24 of Interdisciplinary Applied Mathematics. Springer, New York (2003)

  • Bloch, A.M., Rojo, A.G.: Quantization of a nonholonomic system. Phys. Rev. Lett. 101, 030402 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch, A.M., Marsden, J.E., Zenkov, D.V.: Nonholonomic dynamics. Not. AMS 52, 320–329 (2005)

    MathSciNet  MATH  Google Scholar 

  • Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.: Nonholonomic mechanical systems with symmetry. Arch. Ration. Mech. Anal. 136, 21–99 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Boris, A.V., Mamaev, I.S.: The rolling motion of a rigid body on a plane and a sphere. Hierarchy of dynamics. Reg. Chaot. Dyn 7, 177–200 (2002)

    Article  MATH  Google Scholar 

  • Bou-Rabee, N., Owhadi, H.: Stochastic variational integrators. IMA J. Numer. Anal. 29, 421–443 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, K.C., Karolyi, G.A., Longstaff, F.A., Sanders, A.B.: An empirical comparison of alternative models of the short-term interest rate. J. Finance 47, 1209–1227 (1992)

    Article  Google Scholar 

  • Chaplygin, S.A.: On the theory of motion of nonholonomic systems. The reducing multiplier theorem. Mat. Sbornik XXVIII, 303–314 (1911)

    Google Scholar 

  • Fassó, F., Giacobbe, A., Sansonetto, N.: Guage conservation laws and the momentum equation in non-holonomic mechanics. Rep. Math. Phys. 62, 345–367 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Fedorov, Y.N., Zenkov, D.V.: Dynamics of discrete Chaplygin sleigh. Discrete Contin. Dyn. Syst. 258–267 (2005)

  • Gay-Balmaz, F., Yoshimura, H.: Dirac reduction for nonholonomic mechanical systems and semidirect products. Adv. Appl. Math. 63, 131–213 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Gilsinga, H., Shardlow, T.: Sdelab: a package for solving stochastic differential equations in matlab. J. Comput. Appl. Math. 205, 1002–1018 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Hochgerner, S.: Stochastic Chaplygin systems. Rep. Math. Phys. 66, 385–401 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Hochgerner, S., Ratiu, T.S.: Geometry of non-holonomic diffusion. J. Eur. Math. Soc. 17, 273–319 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Holm, D.D.: Geometric Mechanics Part 2: Rotating, Translating and Rolling. Imperial College Press, London (2008)

    Book  MATH  Google Scholar 

  • Kim, B.: Routh symmetry in the Chaplygin’s rolling ball. Reg. Chaot. Dyn. 16, 663–670 (2011)

    Article  MATH  Google Scholar 

  • Kozlov, V.V.: Invariant measures of the Euler–Poincaré equations on Lie algebras. Funct. Anal. Appl. 22, 58–59 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Lázaro-Camí, J.-A., Ortega, J.-P.: Stochastic Hamiltonian dynamical systems. Rep. Math. Phys 61, 65–122 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Lázaro-Camí, J.-A., Ortega, J.-P.: The stochastic Hamilton–Jacobi equation. J. Geom. Mech. 1, 295–315 (2009a)

    Article  MathSciNet  MATH  Google Scholar 

  • Lázaro-Camí, J.-A., Ortega, J.-P.: Reduction, reconstruction, and skew-product decomposition of symmetric stochastic differential equations. Stoch. Dyn. 9, 1–46 (2009b)

    Article  MathSciNet  MATH  Google Scholar 

  • Lewis, A.D., Murray, R.M.: Variational principles for constrained systems: theory and experiment. Int. J. Nonlinear Mech. 30, 793–815 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems, Volume 33. Translations of Mathematical Monographs. AMS, Providence (1972)

  • Nelson, E.: Dynamical Theories of Brownian Motion. Princeton University Press, Princeton (1967)

    MATH  Google Scholar 

  • Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions, Print companion to [DLMF]. Cambridge University Press, New York, NY (2010)

    Google Scholar 

  • Pavliotis, G.: Stochastic Processes and Applications. Texts in Applied Mathematics. Springer, Berlin (2014)

    Google Scholar 

  • Reynolds, O.: On rolling-friction. Philos. Trans. R. Soc. 166, 155–174 (1876)

    Article  Google Scholar 

  • Schneider, D.: Non-holonomic Euler–Poincaré equations and stability in Chaplygins sphere. Dyn. Syst. 17, 87–130 (2002)

    Article  MathSciNet  Google Scholar 

  • Shi, D., Berchenko-Kogan, Y., Zenkov, D.V., Bloch, A.M.: Hamel’s formalism for infinite-dimensional mechanical systems. J. Nonlinear Sci. (under consideration) (2015)

  • Zenkov, D.V., Leok, M., Bloch, A.M.: Hamel’s formalism and variational integrators on a sphere. In: 51st IEEE Conference on Decision and Control, pp. 7504–7510 (2012)

Download references

Acknowledgments

We acknowledge fruitful and enlightening discussions with Profs. M. Barlow, L. Bates, A. M. Bloch, D. D. Holm, G. Pavliotis, T. S. Ratiu, J. Sniaticki and D. V. Zenkov. FGB is partially supported by the ANR Project GEOMFLUID 14-CE23-0002-01. V.P. acknowledges support from NSERC Discovery Grant and the University of Alberta Centennial Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vakhtang Putkaradze.

Additional information

Communicated by Anthony Bloch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gay-Balmaz, F., Putkaradze, V. On Noisy Extensions of Nonholonomic Constraints. J Nonlinear Sci 26, 1571–1613 (2016). https://doi.org/10.1007/s00332-016-9313-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-016-9313-x

Keywords

Mathematics Subject Classification

Navigation