Abstract
Pectoral fins play a vital role in the maneuvering and locomotion of fish, and they have become an important actuation mechanism for robotic fish. In this paper, we explore the effect of flexibility of robotic fish pectoral fins on the robot locomotion performance and mechanical efficiency. A dynamic model for the robotic fish is presented, where the flexible fin is modeled as multiple rigid elements connected via torsional springs and dampers. Blade element theory is used to capture the hydrodynamic force on the fin. The model is validated with experimental results obtained on a robotic fish prototype, equipped with 3D-printed fins of different flexibility. The model is then used to analyze the impacts of fin flexibility and power/recovery stroke speed ratio on the robot swimming speed and mechanical efficiency. It is found that, in general, flexible fins demonstrate advantages over rigid fins in speed and efficiency at relatively low fin-beat frequencies, while rigid fins outperform flexible fins at higher frequencies. For a given fin flexibility, the optimal frequency for speed performance differs from the optimal frequency for mechanical efficiency. In addition, for any given fin, there is an optimal power/recovery stroke speed ratio, typically in the range of 2–3, that maximizes the speed performance. Overall, the presented model offers a promising tool for fin flexibility and gait design, to achieve speed and efficiency objectives for robotic fish actuated with pectoral fins.

















Similar content being viewed by others
References
Alvarado, P.V.Y., Youcef-Toumi, K.: Design of machines with compliant bodies for biomimetic locomotion in liquid environments. J. Dyn. Syst. Meas. Control 128(1), 3–13 (2006)
Anderson, J.M., Streitlien, K., Barrett, D.S., Triantafyllou, M.S.: Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 41–72 (1998)
Aureli, M., Kopman, V., Porfiri, M.: Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE-ASME Trans. Mechatron. 15(4), 603–614 (2010)
Banerjee, A., Nagarajan, S.: Efficient simulation of large overall motion of beams undergoing large deflection. Multibody Syst. Dyn. 1(1), 113–126 (1997)
Barbera, G.: Theoretical and experimental analysis of a control system for a vehicle biomimetic “boxfish”. Master’s thesis, University of Padua, Padua (2008)
Behbahani, S.B., Tan, X.: A flexible passive joint for robotic fish pectoral fins: design, dynamic modeling, and experimental results. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Chicago, IL, pp. 2832–2838 (2014a)
Behbahani, S.B., Tan, X.: Design and dynamic modeling of a flexible feathering joint for robotic fish pectoral fins. In: ASME Dynamic Systems and Control Conference (DSCC), San Antonio, TX, vol. 1, p. V001T05A005 (2014b)
Behbahani, S.B., Tan, X.: Dynamic modeling of robotic fish caudal fin with electrorheological fluid-enabled tunable stiffness. In: ASME Dynamic Systems and Control Conference (DSCC), Columbus, OH, vol. 3, p. V003T49A006 (2015)
Behbahani, S.B., Tan, X.: Bio-inspired flexible joints with passive feathering for robotic fish pectoral fins. Bioinspir. Biomim. 11(3), 036009 (2016a)
Behbahani, S.B., Tan, X.: Design and modeling of flexible passive rowing joints for robotic fish pectoral fins. IEEE Trans. Robot. 32(5), 1119–1132 (2016b)
Behbahani, S.B., Wang, J., Tan, X.: A dynamic model for robotic fish with flexible pectoral fins. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Wollongong, pp. 1552–1557 (2013)
Blake, R.W.: The mechanics of labriform locomotion I. Labriform locomotion in the angelfish (Pterophyllum eimekei): an analysis of the power stroke. J. Exp. Biol. 82(1), 255–271 (1979)
Blake, R.W.: The mechanics of labriform locomotion: II. An analysis of the recovery stroke and the overall fin-beat cycle propulsive efficiency in the angelfish. J. Exp. Biol. 85(1), 337–342 (1980)
Blake, R.: Fish Locomotion. Cambridge University Press, Cambridge (1983)
Chen, Z., Shatara, S., Tan, X.: Modeling of biomimetic robotic fish propelled by an ionic polymer-metal composite caudal fin. IEEE-ASME Trans. Mechatron. 15(3), 448–459 (2010)
Childress, S.: Mechanics of Swimming and Flying. Cambridge Studies in Mathematical Biology (Book 2), 1st edn. Cambridge University Press, Cambridge (1981)
Clark, A.J., Tan, X., McKinley, P.K.: Evolutionary multiobjective design of a flexible caudal fin for robotic fish. Bioinspir. Biomim. 10(6), 065006 (2015)
Dong, H., Bozkurttas, M., Mittal, R., Madden, P., Lauder, G.V.: Computational modelling and analysis of the hydrodynamics of a highly deformable fish pectoral fin. J. Fluid Mech. 645, 345–373 (2010)
Du, R., Li, Z., Youcef-Toumi, K., y Alvarado, P.V. (eds.): Robot Fish: Bio-inspired Fishlike Underwater Robots, 1st edn. Springer, Berlin (2015)
Fontanella, J.E., Fish, F.E., Barchi, E.I., Campbell-Malone, R., Nichols, R.H., DiNenno, N.K., Beneski, J.T.: Two- and three-dimensional geometries of batoids in relation to locomotor mode. J. Exp. Mar. Biol. Ecol. 446, 273–281 (2013)
Fossen, T .I.: Guidance and Control of Ocean Vehicles. Wiley, Hoboken (1994)
Harper, K.A., Berkemeier, M.D., Grace, S.: Modeling the dynamics of spring-driven oscillating-foil propulsion. IEEE J. Ocean. Eng. 23(3), 285–296 (1998)
Hasan, H.: Design, development, and modeling of a wirelessly charged robotic fish. Master’s thesis, Michigan State University, East Lansing, MI (2015)
Ichiklzaki, T., Yamamoto, I.: Development of robotic fish with various swimming functions. In: Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, Tokyo, pp. 378–383 (2007)
Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.-M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)
Kanso, E.: Swimming due to transverse shape deformations. J. Fluid Mech. 631, 127–148 (2009)
Kanso, E., Marsden, E.J., Rowley, W.C., Melli-Huber, B.J.: Locomotion of articulated bodies in a perfect fluid. J. Nonlinear Sci. 15(4), 255–289 (2005)
Kato, N., Furushima, M.: Pectoral fin model for maneuver of underwater vehicles. In: Symposium on Autonomous Underwater Vehicle Technology (AUV), Monterey, CA, pp. 49–56 (1996)
Kato, N., Inaba, T.: Guidance and control of fish robot with apparatus of pectoral fin motion. In: IEEE International Conference on Robotics and Automation (ICRA), Leuven, vol. 1, pp. 446–451 (1998)
Kato, N., Wicaksono, B., Suzuki, Y.: Development of biology-inspired autonomous underwater vehicle BASS III with high maneuverability. In: Proceedings of the 2000 International Symposium on Underwater Technology, Tokyo, pp. 84–89 (2000)
Kato, N., Ando, Y., Tomokazu, A., Suzuki, H., Suzumori, K., Kanda, T., Endo, S.: Bio-mechanisms of swimming and flying. In: Kato, N., Kamimura, S. (eds.) Elastic Pectoral Fin Actuators for Biomimetic Underwater Vehicles, pp. 271–282. Springer, Tokyo (2008)
Kelly, S.D.: The mechanics and control of robotic locomotion with applications to aquatic vehicles. Ph.D. dissertation, California Institute of Technology, Pasadena California (1998)
Kelly, S.D., Murray, R.M.: Modelling efficient pisciform swimming for control. Int. J. Robust Nonlinear Control 10, 217–241 (2000)
Kim, B., Kim, D.-H., Jung, J., Park, J.-O.: A biomimetic undulatory tadpole robot using ionic polymermetal composite actuators. Smart Mater. Struct. 14(6), 1579 (2005)
Kodati, P., Hinkle, J., Winn, A., Deng, X.: Microautonomous robotic ostraciiform (MARCO): hydrodynamics, design and fabrication. IEEE Trans. Robot. 24(1), 105–117 (2008)
Kopman, V., Porfiri, M.: Design, modeling, and characterization of a miniature robotic fish for research and education in biomimetics and bioinspiration. IEEE/ASME Trans. Mechatron. 18(2), 471–483 (2013)
Kopman, V., Laut, J., Acquaviva, F., Rizzo, A., Porfiri, M.: Dynamic modeling of a robotic fish propelled by a compliant tail. IEEE J. Ocean. Eng 40(1), 209–221 (2015)
Lachat, D., Crespi, A., Ijspeert, A.: BoxyBot: a swimming and crawling fish robot controlled by a central pattern generator. In: Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob., Pisa, pp. 643–648 (2006)
Lauder, G.V., Drucker, E.G.: Morphology and experimental hydrodynamics of fish fin control surfaces. IEEE J. Oceanic Eng. 29(3), 556–571 (2004)
Lauder, G.V., Madden, P.G.A., Mittal, R., Dong, H., Bozkurttas, M.: Locomotion with flexible propulsors: I. Experimental analysis of pectoral fin swimming in sunfish. Bioinspir. Biomim. 1(4), S25–34 (2006)
Lighthill, M.J.: Large-amplitude elongated-body theory of fish locomotion. Proc. R. Soc. Lond. B: Biol. Sci. 179(1055), 125–138 (1971)
Liu, H., Wassersug, R., Kawachi, K.: A computational fluid dynamics study of tadpole swimming. J. Exp. Biol. 199(6), 1245–1260 (1996)
Liu, J., Dukes, I., Hu, H.: Novel mechatronics design for a robotic fish. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Alberta, pp. 807–812 (2005)
Long, J.H.J., Koob, T.J., Irving, K., Combie, K., Engel, V., Livingston, N., Lammert, A., Schumacher, J.: Biomimetic evolutionary analysis: testing the adaptive value of vertebrate tail stiffness in autonomous swimming robots. J. Exp. Biol. 209(23), 4732–4746 (2006)
Low, K.H.: Locomotion and depth control of robotic fish with modular undulating fins. Int. J. Autom. Comput. 3(4), 348–357 (2006)
Low, K.H., Willy, A.: Biomimetic motion planning of an undulating robotic fish fin. J. Vib. Control 12(12), 1337–1359 (2006)
Marras, S., Porfiri, M.: Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion. J. R. Soc. Interface 9(73), 1856–1868 (2012)
Mason, R.: Fluid locomotion and trajectory planning for shape-changing robots. Ph.D. dissertation, California Institute of Technology, Pasadena California (2003)
Mason, R., Burdick, J.: Construction and modelling of a carangiform robotic fish. In: Experimental Robotics VI. Lecture Notes in Control and Information Sciences, vol. 250, pp. 235–242. Springer, London (2000a)
Mason, R., Burdick, J.W.: Experiments in carangiform robotic fish locomotion. In: IEEE International Conference on Robotics and Automation (ICRA), San Francisco, CA, vol. 1, pp. 428–435 (2000b)
Melli, J.B., Rowley, C.W., Rufat, D.S.: Motion planning for an articulated body in a perfect planar fluid. SIAM J. Appl. Dyn. Syst. 5(4), 650–669 (2006)
Mittal, R.: Computational modeling in biohydrodynamics: trends, challenges, and recent advances. IEEE J. Ocean. Eng. 29(3), 595–604 (2004)
Morgansen, K.A., Triplett, B.I., Klein, D.J.: Geometric methods for modeling and control of free-swimming fin-actuated underwater vehicles. IEEE Trans. Robot. 23(6), 1184–1199 (2007)
Nakashima, M., Ohgishi, N., Ono, K.: A study on the propulsive mechanism of a double jointed fish robot utilizing self-excitation control. JSME Int. J. Ser. C 46(3), 982–990 (2003)
Palmisano, J., Ramamurti, R., Lu, K.-J., Cohen, J., Sandberg, W., Ratna, B.: Design of a biomimetic controlled-curvature robotic pectoral fin. In: IEEE International Conference on Robotics and Automation (ICRA), Rome, pp. 966–973 (2007)
Phelan, C., Tangorra, J., Lauder, G., Hale, M.: A biorobotic model of the sunfish pectoral fin for investigations of fin sensorimotor control. Bioinsp. Biomim. 5(3), 035003 (2010)
Rohr, J.J., Fish, F.E.: Strouhal numbers and optimization of swimming by odontocete cetaceans. J. Exp. Biol. 207(10), 1633–1642 (2004)
Rosenberger, L.J.: Pectoral fin locomotion in batoid fishes: undulation versus oscillation. J. Exp. Biol. 204(2), 379–394 (2001)
Sfakiotakis, M., Lane, D., Davies, J.: Review of fish swimming modes for aquatic locomotion. IEEE J. Ocean. Eng. 24(2), 237–252 (1999)
Shoele, K., Zhu, Q.: Numerical simulation of a pectoral fin during labriform swimming. J. Exp. Biol. 213(12), 2038–2047 (2010)
Sitorus, P.E., Nazaruddin, Y.Y., Leksono, E., Budiyono, A.: Design and implementation of paired pectoral fins locomotion of labriform fish applied to a fish robot. J. Bionic Eng. 6(1), 37–45 (2009)
Suzuki, H., Kato, N., Suzumori, K.: Load characteristics of mechanical pectoral fin. Exp. Fluids 44(5), 759–771 (2007)
Tan, X.: Autonomous robotic fish as mobile sensor platforms: challenges and potential solutions. Mar. Technol. Soc. J. 45(4), 31–40 (2011)
Tangorra, J., Davidson, S., Hunter, I., Madden, P., Lauder, G., Haibo, D., Bozkurttas, M., Mittal, R.: The development of a biologically inspired propulsor for unmanned underwater vehicles. IEEE J. Ocean. Eng. 32(3), 533–550 (2007)
Triantafyllou, M.S., Triantafyllou, G.S.: An efficient swimming machine. Sci. Am. 272(3), 64–71 (1995)
Triantafyllou, M.S., Triantafyllou, G.S., Yue, D.K.P.: Hydrodynamics of fishlike swimming. Ann. Rev. Fluid Mech. 32(1), 33–53 (2000)
Vogel, S.: Life in Moving Fluids: The Physical Biology of Flow, 2nd edn. Princeton University Press, Princeton (1994)
Wang, J., Tan, X.: A dynamic model for tail-actuated robotic fish with drag coefficient adaptation. Mechatronics 23(6), 659–668 (2013)
Wang, J., Tan, X.: Averaging tail-actuated robotic fish dynamics through force and moment scaling. IEEE Trans. Robot. 31(4), 906–917 (2015)
Wang, Z., Hang, G., Li, J., Wang, Y., Xiao, K.: A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin. Sens. Actuators A: Phys. 144(2), 354–360 (2008)
Wang, J., McKinley, P.K., Tan, X.: Dynamic modeling of robotic fish with a base-actuated flexible tail. J. Dyn. Syst. Meas. Control 137(1), 011004 (2015)
Webb, P.W.: Kinematics of pectoral fin propulsion in cymatogaster aggregata. J. Exp. Biol. 59(3), 697–710 (1973)
Webb, P.W.: Bulletin, fisheries research board of Canada. In: Hydrodynamics and Energetics of Fish Propulsion, vol. 190, pp. 1–159. Department of the Environment, Fisheries and Marine Service, Ottawa (1975)
Yu, J., Tan, M., Wang, S., Chen, E.: Development of a biomimetic robotic fish and its control algorithm. IEEE Trans. Syst. Man Cybern. B, Cybern. 34(4), 1798–1810 (2004)
Yu, J., Ding, R., Yang, Q., Tan, M., Wang, W., Zhang, J.: On a bio-inspired amphibious robot capable of multimodal motion. IEEE/ASME Trans. Mechatron. 17(5), 847–856 (2012)
Zhang, Y.-H., He, J.-H., Yang, J., Zhang, S.-W., Low, K.H.: A computational fluid dynamics (CFD) analysis of an undulatory mechanical fin driven by shape memory alloy. Int. J. Autom. Comput. 3(4), 374–381 (2006)
Zhang, F., Ennasr, O., Litchman, E., Tan, X.: Autonomous sampling of water columns using gliding robotic fish: algorithms and harmful algae-sampling experiments. IEEE Syst. J. 10(3), 1271–1281 (2016)
Zhou, C., Tan, M., Gu, N., Cao, Z., Wang, S., Wang, L.: The design and implementation of a biomimetic robot fish. Int. J. Adv. Robot. Syst. 5(2), 185–192 (2008)
Acknowledgements
The authors would like to gratefully acknowledge Dr. Shahram Pouya for the useful discussion on scaling laws and Mr. John Thon for the technical support on the robotic fish prototype.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Maurizio Porfiri.
This work was supported by National Science Foundation (Grants IIP-1343413, IIS-1319602, CCF-1331852, ECCS-1446793).
Rights and permissions
About this article
Cite this article
Bazaz Behbahani, S., Tan, X. Role of Pectoral Fin Flexibility in Robotic Fish Performance. J Nonlinear Sci 27, 1155–1181 (2017). https://doi.org/10.1007/s00332-017-9373-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00332-017-9373-6