Skip to main content
Log in

Derivation of Inviscid Quasi-geostrophic Equation from Rotational Compressible Magnetohydrodynamic Flows

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we consider the compressible models of magnetohydrodynamic flows giving rise to a variety of mathematical problems in many areas. We derive a rigorous quasi-geostrophic equation governed by magnetic field from the rotational compressible magnetohydrodynamic flows with the well-prepared initial data. It is a first derivation of quasi-geostrophic equation governed by the magnetic field, and the tool is based on the relative entropy method. This paper covers two results: the existence of the unique local strong solution of quasi-geostrophic equation with the good regularity and the derivation of a quasi-geostrophic equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Desjardins, B., Grenier, E.: Low mach number limit of viscous compressible flows in the whole space. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455(1986), 2271–2279 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Desjardins, B., Grenier, E., Lions, P.-L., Masmoudi, N.: Incompressible limit for solutions of the isentropic Navier–Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78, 461–471 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Feireisl, E., Gallagher, I., Novotný, A.: A singular limit for compressible rotating fluids. SIAM J. Math. Anal. 44(1), 192–205 (2012a)

    Article  MathSciNet  MATH  Google Scholar 

  • Feireisl, E., Gallagher, I., Gerard-Varet, D., Novotný, A.: Multi-scale analysis of compressible viscous and rotating fluids. Commun. Math. Phys. 314(3), 641–670 (2012b)

    Article  MathSciNet  MATH  Google Scholar 

  • Feireisl, E., Novotný, A.: Inviscid incompressible limits of the full Navier–Stokes–Fourier system. Commun. Math. Phys. 321(3), 605–628 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Feireisl, E., Novotný, A.: Scale interactions in compressible rotating fluids. Ann. Mat. Pura Appl. 4(193), 1703–1725 (2014a)

    Article  MathSciNet  MATH  Google Scholar 

  • Feireisl, E., Novotný, A.: Multiple scales and singular limits for compressible rotating fluids with general initial data. Commun. Partial Differ. Equ. 39(6), 1104–1127 (2014b)

    Article  MathSciNet  MATH  Google Scholar 

  • Feireisl, E., Novotný, A.: The low Mach number limit for the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 186(1), 77–107 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Hu, X.P., Wang, D.H.: Low Mach number limit of viscous compressible magnetohydrodynamic flows. SIAM J. Math. Anal. 41, 1272–1294 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, S., Ju, Q.C., Li, F.C.: Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions. Commun. Math. Phys. 297, 371–400 (2010a)

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, S., Ju, Q.C., Li, F.C.: Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients. SIAM J. Math. Anal. 42, 2539–2553 (2010b)

    Article  MathSciNet  MATH  Google Scholar 

  • Jungel, A., Lin, C.K., Wu, K.C.: An asymptotic limit of a Navier-Stokes system with capillary effects. Commun. Math. Phys. 329(2), 725–744 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Hu, X., Wang, D.: Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows. Arch. Ration. Mech. Anal. 197, 203–238 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Kato, T., Lai, C.-Y.: Nonlinear evolution equations and the Euler flow. J. Funct. Anal. 56(1), 15–28 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Kato, T., Ponce, G.: Well-posedness of the Euler and Navier–Stokes equations in the Lebesgue spaces \(L^p_ s (R^2)\). Rev. Mat. Iberoamericana 2(1–2), 73–88 (1986)

    Article  MathSciNet  Google Scholar 

  • Lions, P.-L., Masmoudi, N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 9(77), 585–627 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Masmoudi, N.: Incompressible, inviscid limit of the compressible Navier–Stokes system. Ann. Inst. H. Poincar Anal. Non Linire. 18(2), 199–224 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Sam Kwon.

Additional information

Communicated by Charles R. Doering.

The work of the first author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03030249).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, YS., Lin, YC. & Su, CF. Derivation of Inviscid Quasi-geostrophic Equation from Rotational Compressible Magnetohydrodynamic Flows. J Nonlinear Sci 28, 599–620 (2018). https://doi.org/10.1007/s00332-017-9420-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-017-9420-3

Keywords

Mathematics Subject Classification