Skip to main content

Advertisement

Log in

Toroidal Geometry Stabilizing a Latitudinal Ring of Point Vortices on a Torus

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We carry out the linear stability analysis of a polygonal ring configuration of N point vortices, called an N-ring, along the line of latitude \(\theta _0\) on a torus with the aspect ratio \(\alpha \). Deriving a criterion for the stability depending on the parameters N, \(\theta _0\) and \(\alpha \), we reveal how the aspect ratio \(\alpha \) contributes to the stability of the N-ring. While the N-ring necessarily becomes unstable when N is sufficiently large for fixed \(\alpha \), the stability is closely associated with the geometric property of the torus for variable \(\alpha \); for low aspect ratio \(\alpha \sim 1\), \(N=7\) is a critical number determining the stability of the N-ring when it is located along a certain range of latitudes, which is an analogous result to those in a plane and on a sphere. On the other hand, the stability is determined by the sign of curvature for high aspect ratio \(\alpha \gg 1\). That is to say, the N-ring is neutrally stable if it is located on the inner side of the toroidal surface with a negative curvature, while the N-ring on its outer side with a positive curvature is unstable. Furthermore, based on the linear stability analysis, we describe nonlinear evolution of the N-ring when it becomes unstable. It is difficult to deal with this problem, since the evolution equation of the N point vortices is formulated as a Hamiltonian system with N degrees of freedom, which is in general non-integrable. Thus, we reduce the Hamiltonian system to a simple integrable system by introducing a cyclic symmetry. Owing to this reduction, we successfully find some periodic orbits in the reduced system, whose local bifurcations and global transitions for variable \(\alpha \) are characterized in terms of the fundamental group of the torus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

Download references

Acknowledgements

This work was partially supported by JSPS A3 Foresight Program and Grants-in-Aid for Scientific Research KAKENHI (B) No. 26287023 from JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Sakajo.

Additional information

Communicated by Paul Newton.

Derivation of the Linearized Equation

Derivation of the Linearized Equation

Starting from

$$\begin{aligned} \theta _m(t) = \theta _0+\varepsilon \vartheta _m(t), \quad \phi _m(t) = \frac{2\pi m}{N}+tV_N(\theta _0)+\varepsilon \varphi _m(t), \end{aligned}$$
(37)

we derive the evolution equation of \((\vartheta _m(t),\varphi _m(t))\) by the asymptotic expansion of \(O(\varepsilon )\). For \((\theta _m(t),\phi _m(t))\) and \((\theta _j(t),\phi _j(t))\) with \(m\ne j\), \(\zeta _m/\zeta _j\) is asymptotically expanded as follows:

$$\begin{aligned} \zeta _m/\zeta _j=\left( 1-\varepsilon \frac{\vartheta _m(t)-\vartheta _j(t)}{\alpha -\cos \theta _0}\right) \exp \left\{ \mathrm {i}\frac{2\pi (m-j)}{N}+\varepsilon \mathrm {i}(\varphi _m(t)-\varphi _j(t))\right\} +o(\varepsilon ). \end{aligned}$$
(38)

For an integer j, define \(\omega _j\) by \( \omega _j=\mathrm {e}^{2\pi \mathrm {i} j/N}. \) Since \(K(\zeta )\) is a holomorphic function at \(\omega _{m-j}=\exp (\mathrm {i}(2\pi /N)(m-j))\ne 1\), we obtain the following expansion of \(K(\zeta _m/\zeta _j)\),

$$\begin{aligned} K(\zeta _m/\zeta _j) = K(\omega _{m-j})+K'(\omega _{m-j})(\zeta _m/\zeta _j-\omega _{m-j})+o(\vert \zeta _m/\zeta _j-\omega _{m-j}\vert ). \end{aligned}$$

Using (38), we have

$$\begin{aligned} \zeta _m/\zeta _j-\omega _{m-j} = -\varepsilon \left( \frac{\vartheta _m(t)-\vartheta _j(t)}{\alpha -\cos \theta _0}-\mathrm {i}(\varphi _m(t)-\varphi _j(t))\right) \omega _{m-j}+o(\varepsilon ), \end{aligned}$$

which yields

$$\begin{aligned}&K(\zeta _m/\zeta _j)+\overline{K(\zeta _m/\zeta _j)}\nonumber \\&\quad = K(\omega _{m-j})+\overline{K(\omega _{m-j})}-\varepsilon \left( \omega _{m-j}K'(\omega _{m-j})+\overline{\omega _{m-j}K'(\omega _{m-j})}\right) \frac{\vartheta _m(t)-\vartheta _j(t)}{\alpha -\cos \theta _0}\nonumber \\&\qquad + \mathrm {i}\varepsilon \left( \omega _{m-j}K'(\omega _{m-j})-\overline{\omega _{m-j}K'(\omega _{m-j})}\right) (\varphi _m(t)-\varphi _j(t))+o(\varepsilon ), \end{aligned}$$
(39)
$$\begin{aligned}&\mathrm {i}\left( K(\zeta _m/\zeta _j)-\overline{K(\zeta _m/\zeta _j)}\right) \nonumber \\&\quad = \mathrm {i}\left( K(\omega _{m-j})-\overline{K(\omega _{m-j})}\right) \nonumber \\&\qquad -\mathrm {i}\varepsilon \left( \omega _{m-j}K'(\omega _{m-j})-\overline{\omega _{m-j}K'(\omega _{m-j})}\right) \frac{\vartheta _m(t)-\vartheta _j(t)}{\alpha -\cos \theta _0}\nonumber \\&\qquad -\varepsilon \left( \omega _{m-j}K'(\omega _{m-j})+\overline{\omega _{m-j}K'(\omega _{m-j})}\right) (\varphi _m(t)-\varphi _j(t))+o(\varepsilon ). \end{aligned}$$
(40)

Since

$$\begin{aligned} \zeta ^{-1}K'(\zeta ^{-1}) = -\frac{\zeta ^{-1}}{(\zeta ^{-1}-1)^2}-\sum _{n\ge 1} \frac{\rho ^n\zeta ^{-1}}{(\rho ^n\zeta ^{-1}-1)^2}+\frac{\rho ^n\zeta ^{-1}}{(\zeta ^{-1}-\rho ^n)^2} = \zeta K'(\zeta ), \end{aligned}$$

we have

$$\begin{aligned} \overline{\omega _{m-j}K'(\omega _{m-j})}=\omega _{m-j}^{-1}K'(\omega _{m-j}^{-1})=\omega _{m-j}K'(\omega _{m-j}). \end{aligned}$$

It follows from \(K(\zeta ^{-1})+K(\zeta )=1\) that Eqs. (39) and (40) are simplified as follows:

$$\begin{aligned} K(\zeta _m/\zeta _j)+\overline{K(\zeta _m/\zeta _j)}&= 1-2\varepsilon \frac{\omega _{m-j}K'(\omega _{m-j})}{\alpha -\cos \theta _0}\left( \vartheta _m(t)-\vartheta _j(t)\right) +o(\varepsilon ),\\ \mathrm {i}\left( K(\zeta _m/\zeta _j)-\overline{K(\zeta _m/\zeta _j)}\right)&= \mathrm {i}\left( K(\omega _{m-j})-K(\overline{\omega _{m-j}})\right) \\&\quad -2\varepsilon \omega _{m-j}K'(\omega _{m-j})(\varphi _m(t)-\varphi _j(t))+o(\varepsilon ). \end{aligned}$$

Summing them up from \(j=1\) to N except \(j=m\), we have

$$\begin{aligned} \sum _{j\ne m}^N K(\zeta _m/\zeta _j)+\overline{K(\zeta _m/\zeta _j)}&=\sum _{j\ne m}^N 1-\varepsilon \frac{ 2\omega _{m-j}K'(\omega _{m-j})}{\alpha -\cos \theta _0}\left( \vartheta _m(t)-\vartheta _j(t)\right) +o(\varepsilon )\nonumber \\&= N-1-\varepsilon \sum _{j=1}^{N-1} \frac{2\omega _{j}K'(\omega _{j})}{\alpha -\cos \theta _0}\vartheta _m(t)\nonumber \\&\quad +\varepsilon \sum _{j\ne m}^N \frac{2\omega _{m-j}K'(\omega _{m-j})}{\alpha -\cos \theta _0}\vartheta _j(t)+o(\varepsilon ),\\ \mathrm {i}\sum _{j\ne m}^N K(\zeta _m/\zeta _j)-\overline{K(\zeta _m/\zeta _j)}&= \mathrm {i}\sum _{j\ne m}^N \left( K(\omega _{m-j})-K(\overline{\omega _{m-j}})\right) \\&\quad -\varepsilon \sum _{j\ne m}^N 2\omega _{m-j}K'(\omega _{m-j})(\varphi _m(t)-\varphi _j(t))+o(\varepsilon )\nonumber \\&= \mathrm {i}\sum _{j=1}^{N-1} \left( K(\omega _{j})-K(\omega _{N-j})\right) -\varepsilon \sum _{j=1}^{N-1} 2\omega _{j}K'(\omega _{j})\varphi _m(t)\\&\quad +\varepsilon \sum _{j\ne m}^N 2\omega _{m-j}K'(\omega _{m-j})\varphi _j(t)+o(\varepsilon )\\&= -\varepsilon \sum _{j=1}^{N-1} 2\omega _{j}K'(\omega _{j})\varphi _m(t)\\&\quad +\varepsilon \sum _{j\ne m}^N 2\omega _{m-j}K'(\omega _{m-j})\varphi _j(t)+o(\varepsilon ). \end{aligned}$$

We can rewrite them as

$$\begin{aligned} \sum _{j\ne m}^N K(\zeta _m/\zeta _j)+\overline{K(\zeta _m/\zeta _j)}&= N-1+\varepsilon \sum _{j=1}^N \frac{k_{m-j}}{\alpha -\cos \theta _0}\vartheta _j(t)+o(\varepsilon ), \end{aligned}$$
(41)
$$\begin{aligned} \mathrm {i}\sum _{j\ne m}^N K(\zeta _m/\zeta _j)-\overline{K(\zeta _m/\zeta _j)}&= \varepsilon \sum _{j=1}^N k_{m-j}\varphi _j(t)+o(\varepsilon ). \end{aligned}$$
(42)

The remaining part of (3) is expanded as follows:

$$\begin{aligned} \frac{\alpha \theta _m - \sin \theta _m}{4\pi ^2 \alpha }+\frac{r_c(\theta _j)}{4\pi ^2\mathscr {A}} - \frac{1}{4\pi }&= \frac{\alpha \theta _0 - \sin \theta _0}{4\pi ^2 \alpha }+\frac{r_c(\theta _0)}{4\pi ^2\mathscr {A}} - \frac{1}{4\pi }\\&\quad +\frac{\alpha - \cos \theta _0}{4\pi ^2 \alpha }(\theta _m-\theta _0)+o(\vert \theta _m-\theta _0\vert )\\&\quad -\frac{1}{4\pi ^2{\mathscr {A}}(\alpha -\cos \theta _0)} (\theta _j-\theta _0)+o(\vert \theta _j-\theta _0\vert )\\&= \frac{\alpha \theta _0 - \sin \theta _0}{4\pi ^2 \alpha }+\frac{r_c(\theta _0)}{4\pi ^2\mathscr {A}} - \frac{1}{4\pi }\\&\quad +\varepsilon \left\{ \frac{\alpha - \cos \theta _0}{4\pi ^2 \alpha }\vartheta _m-\frac{1}{4\pi ^2{\mathscr {A}}(\alpha -\cos \theta _0)} \vartheta _j\right\} \\&\quad +o(\varepsilon ),\\ \frac{\alpha \theta _m - \sin \theta _m}{4\pi ^2\alpha }+\frac{r_c(\theta _m)}{4\pi ^2\mathscr {A}}+\frac{1}{4\pi } \sin \theta _m&= \frac{\alpha \theta _0 - \sin \theta _0}{4\pi ^2\alpha }+\frac{r_c(\theta _0)}{4\pi ^2\mathscr {A}}+\frac{1}{4\pi } \sin \theta _0\\&\quad +\varepsilon \left\{ \frac{\alpha - \cos \theta _0}{4\pi ^2\alpha }\vartheta _m-\frac{1}{4\pi ^2{\mathscr {A}}(\alpha -\cos \theta _0)}\vartheta _m\right. \\&\quad \left. +\frac{\cos \theta _0}{4\pi } \vartheta _m\right\} +o(\varepsilon ). \end{aligned}$$

Hence, we have

$$\begin{aligned}&r^2(\alpha -\cos \theta _m)^2 \frac{\mathrm {d}\phi _m}{\mathrm {d}t} \nonumber \\&\quad = \frac{\varGamma }{4\pi }\left( N-1+\varepsilon \sum _{j=1}^N \frac{k_{m-j}}{\alpha -\cos \theta _0}\vartheta _j(t)\right) \nonumber \\&\qquad +\,\sum _{j\ne m}^N \varGamma \left[ \frac{\alpha \theta _0 - \sin \theta _0}{4\pi ^2 \alpha }+\frac{r_c(\theta _0)}{4\pi ^2\mathscr {A}} - \frac{1}{4\pi }\right. \nonumber \\&\left. \qquad +\,\varepsilon \left\{ \frac{\alpha - \cos \theta _0}{4\pi ^2 \alpha }\vartheta _m-\frac{1}{4\pi ^2{\mathscr {A}}(\alpha -\cos \theta _0)} \vartheta _j\right\} \right] \nonumber \\&\qquad +\,\varGamma \left[ \frac{\alpha \theta _0 - \sin \theta _0}{4\pi ^2\alpha }+\frac{r_c(\theta _0)}{4\pi ^2\mathscr {A}}+\frac{1}{4\pi } \sin \theta _0\right. \nonumber \\&\qquad \left. +\,\varepsilon \left\{ \frac{\alpha - \cos \theta _0}{4\pi ^2\alpha }\vartheta _m-\frac{\vartheta _m}{4\pi ^2{\mathscr {A}}(\alpha -\cos \theta _0)}+\frac{\cos \theta _0}{4\pi } \vartheta _m\right\} \right] +o(\varepsilon )\nonumber \\&\quad =N\varGamma \left[ \frac{\alpha \theta _0 - \sin \theta _0}{4\pi ^2 \alpha }+\frac{r_c(\theta _0)}{4\pi ^2\mathscr {A}}\right] +\frac{\varGamma }{4\pi } \sin \theta _0\nonumber \\&\qquad +\, \varepsilon \left[ \frac{\varGamma }{4\pi }\sum _{j=1}^N \frac{k_{m-j}}{\alpha -\cos \theta _0}\vartheta _j(t)+ N\varGamma \left( \frac{\alpha - \cos \theta _0}{4\pi ^2\alpha }+\frac{\cos \theta _0}{4\pi N}\right) \vartheta _m\right. \nonumber \\&\qquad \left. -\,\varGamma \sum _{j=1}^N\frac{\vartheta _j}{4\pi ^2{\mathscr {A}}(\alpha -\cos \theta _0)}\right] +o(\varepsilon )\nonumber \\&\quad =(R-r\cos \theta _0)^2V_N(\theta _0)\nonumber \\&\qquad +\, \varepsilon \left[ \frac{\varGamma }{4\pi }\sum _{j=1}^N \frac{k_{m-j}}{\alpha -\cos \theta _0}\vartheta _j(t)+ N\varGamma \left( \frac{\alpha - \cos \theta _0}{4\pi ^2\alpha }+\frac{\cos \theta _0}{4\pi N}\right) \vartheta _m\right. \nonumber \\&\qquad \left. -\,\varGamma \sum _{j=1}^N\frac{\vartheta _j}{4\pi ^2{\mathscr {A}}(\alpha -\cos \theta _0)}\right] +o(\varepsilon ). \end{aligned}$$
(43)

Owing to

$$\begin{aligned} \alpha -\cos \theta _m= & {} \alpha -\cos \theta _0+\varepsilon \sin \theta _0\vartheta _m+o(\varepsilon ),\\ (\alpha -\cos \theta _m)^2= & {} (\alpha -\cos \theta _0)^2\left( 1+2\varepsilon \frac{\sin \theta _0\vartheta _m}{\alpha -\cos \theta _0}\right) +o(\varepsilon ), \end{aligned}$$

we obtain

$$\begin{aligned}&r^2(\alpha -\cos \theta _m)^2 \frac{\mathrm {d}\phi _m}{\mathrm {d}t} \nonumber \\&\quad = r^2(\alpha -\cos \theta _0)^2\left( 1+2\varepsilon \frac{\sin \theta _0\vartheta _m}{\alpha -\cos \theta _0}\right) \left( V_N(\theta _0)+\varepsilon \frac{\mathrm {d}\varphi _m}{\mathrm {d}t}\right) +o(\varepsilon )\nonumber \\&\quad = (R-r\cos \theta _0)^2V_N(\theta _0)+2\varepsilon r^2(\alpha -\cos \theta _0)\sin \theta _0V_N(\theta _0)\vartheta _m\nonumber \\&\qquad +\varepsilon (R-r\cos \theta _0)^2\frac{\mathrm {d}\varphi _m}{\mathrm {d}t}+o(\varepsilon ). \end{aligned}$$
(44)

Comparing (43) with (44), and taking the limit as \(\varepsilon \rightarrow 0\), we finally obtain the linearized equation for \(\varphi _m\),

$$\begin{aligned} \frac{\mathrm {d}\varphi _m}{\mathrm {d}t}&=\frac{\varGamma }{4\pi r^2}\sum _{j=1}^N \frac{k_{m-j}}{(\alpha -\cos \theta _0)^3}\vartheta _j(t)-\varGamma \sum _{j=1}^N\frac{\vartheta _j}{4\pi ^2 r^2{\mathscr {A}}(\alpha -\cos \theta _0)^3}\\&\quad +\frac{N\varGamma }{r^2(\alpha -\cos \theta _0)^2}\left( \frac{\alpha - \cos \theta _0}{4\pi ^2\alpha }+\frac{\cos \theta _0}{4\pi N}-\frac{2r^2V_N(\theta _0)\sin \theta _0(\alpha -\cos \theta _0)}{N\varGamma }\right) \vartheta _m. \end{aligned}$$

Similarly, we derive the linearized equation for \(\vartheta _m\),

$$\begin{aligned} \frac{\mathrm {d}\vartheta _m}{\mathrm {d}t}=\frac{\varGamma }{4\pi r^2}\sum _{j=1}^N \frac{k_{m-j}}{\alpha -\cos \theta _0}\varphi _j(t){,} \end{aligned}$$

by comparing (42) with

$$\begin{aligned} r^2(\alpha -\cos \theta _m)\frac{\mathrm {d}\theta _m}{\mathrm {d}t}= & {} r^2(\alpha -\cos \theta _0+\varepsilon \sin \theta _0\vartheta _m)\varepsilon \frac{\mathrm {d}\vartheta _m}{\mathrm {d}t}+o(\varepsilon )\\= & {} \varepsilon r^2(\alpha -\cos \theta _0)\frac{\mathrm {d}\vartheta _m}{\mathrm {d}t}+o(\varepsilon ). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakajo, T., Shimizu, Y. Toroidal Geometry Stabilizing a Latitudinal Ring of Point Vortices on a Torus. J Nonlinear Sci 28, 1043–1077 (2018). https://doi.org/10.1007/s00332-017-9440-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-017-9440-z

Keywords

Mathematics Subject Classification