Skip to main content
Log in

The Wrinkling of a Twisted Ribbon

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Recent experiments by Chopin and Kudrolli (Phys Rev Lett 111:174302, 2013) showed that a thin elastic ribbon, when twisted into a helicoid, may wrinkle in the center. We study this from the perspective of elastic energy minimization, building on recent work by Chopin et al. (J Elast 119(1–2):137–189, 2015) in which they derive a modified von Kármán functional and solve the relaxed problem. Our main contribution is to show matching upper and lower bounds for the minimum energy in the small-thickness limit. Along the way, we show that the displacements must be small where we expect that the ribbon is helicoidal, and we estimate the wavelength of the wrinkles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

First appeared in Green (1937); now in the public domain

Fig. 2
Fig. 3

\(\varOmega ^{+}\): regions filled with positively sloped diagonal lines (blue). \(\varOmega ^{-}\): regions filled with negatively sloped diagonal lines (red). \(\varOmega ^{0}\): Two hexagons \(\varOmega ^{+}\cap \varOmega ^{-}\). Outlined with thick lines (purple) (Color figure online).

Fig. 4

\(\varOmega ^{\pm },\,\varOmega ^{0}\): carried over from Fig. 3. \(x_1= \xi '_\mathrm {left}\) or \(\xi '_\mathrm {right}\): thick vertical lines (dark green). \(\blacktriangle ^{+}\): triangular shaded regions (light green) (Color figure online).

Similar content being viewed by others

Notes

  1. There are at least two candidates. Firstly, this buckling may be related to the Poisson ratio-driven wrinkling of a stretched but untwisted sheet, as analyzed by Cerda and Mahadevan (2003). Alternatively, these could have to do with the fact that, using a nonlinear energy functional such as Eq. (5), the helicoid is not the relaxed solution. Our model sees neither effect: we exclude the first by assuming Poisson ratio 0, and the second by using a small-displacement, small-slope energy functional.

  2. This is called tension field theory in the physics literature.

  3. Note the similarity to Landau theories: a small but convex term regularizes a non-convex minimization problem.

  4. This is not a proof: for that, see Friesecke and James (2002) and Ciarlet (1980).

  5. For a general introduction to the relaxed energy functional, see Dacorogna (2008), and for theorems on the relaxation for a two-dimensional sheet in three dimensions, see Pipkin (1986).

  6. This argument is due to Strauss (1973), who used it to show that control on \({{\mathrm{e}}}(\varvec{u})\) in \(L^1\) yields control on \(\varvec{u}\).

  7. In the sequel, we will make many statements that hold for both \(\varvec{a}^+\) and \(\varvec{a}^-\). Any statement containing ± should be interpreted as two statements, one with ± everywhere replaced with \(+\), and a similar one with −.

  8. This argument is closely connected to the trace inequality in BD. We have \(L^1\) control on \({{\mathrm{e}}}(\varvec{u})\) and would like control on the trace of \(\varvec{u}\). This does not follow directly from Korn’s inequality (which requires \(L^p\) control, for \(p>1\)), but it follows from the trace inequality in BD (Temam and Strang 1980; Babadjian 2015). Because we would like to know how the constant depends on \(\xi \) and \(l\), we prove the result directly.

  9. Our only concrete requirement on \(v^{(h)}\) is that it must ‘waste the correct amount of arc length’ Lemma 1. That \(\vartheta ^{(h)}\) integrates to 0 in \(x_2\) is equivalent to asserting that the left-hand side of Eq. (12) is 0, rather than being merely small.

  10. \(\varvec{u}^{(h)}(\varvec{x})=\varvec{0}\) for \(|x_1| > \xi \).

  11. There is no ‘off by one’ error at the upper limit of the summation: recall from Eq. (30) that \(f_{N_{h}+1} = 0\).

References

  • Argon, A.S., Gupta, V., Landis, H.S., Cornie, J.A.: Intrinsic toughness of interfaces between SiC coatings and substrates of Si or C fibre. J. Mater. Sci. 24(4), 1207–1218 (1989)

    Article  Google Scholar 

  • Audoly, B., Pomeau, Y.S: Elasticity and Geometry: From Hair Curls to the Non-Linear Response of Shells. Oxford University Press, Oxford (2010). Autre tirage (2011)

  • Babadjian, J.-F.: Traces of functions of bounded deformation. Indiana Univ. Math. J. 64, 1271–1290 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Bedrossian, J., Kohn, R.V.: Blister patterns and energy minimization in compressed thin films on compliant substrates. Commun. Pure Appl. Math. 68(3), 472–510 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Bella, P., Kohn, R.V.: Metric-induced wrinkling of a thin elastic sheet. J. Nonlinear Sci. 24(6), 1147–1176 (2014a)

    Article  MathSciNet  MATH  Google Scholar 

  • Bella, P., Kohn, R.V.: Wrinkles as the result of compressive stresses in an annular thin film. Commun. Pure Appl. Math. 67(5), 693–747 (2014b)

    Article  MathSciNet  MATH  Google Scholar 

  • Bella, P., Kohn, R.V.: Coarsening of folds in hanging drapes. Commun. Pure Appl. Math. 70(5), 978–1021 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Ben Belgacem, H., Conti, S., DeSimone, A., Müller, S.: Rigorous bounds for the Föppl-von Kármán theory of isotropically compressed plates. J. Nonlinear Sci. 10(6), 661–685 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Cerda, E., Mahadevan, L.: Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302 (2003)

    Article  Google Scholar 

  • Chopin, J., Kudrolli, A.: Helicoids, wrinkles, and loops in twisted ribbons. Phys. Rev. Lett. 111, 174302 (2013)

    Article  Google Scholar 

  • Chopin, J., Démery, V., Davidovitch, B.: Roadmap to the morphological instabilities of a stretched twisted ribbon. J. Elast. 119(1–2), 137–189 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Ciarlet, P.G.: A justification of the von Kármán equations. Arch. Ration. Mech. Anal. 73(4), 349–389 (1980)

    Article  MATH  Google Scholar 

  • Conti, S., Maggi, F., Müller, S.: Rigorous derivation of Föppl’s theory for clamped elastic membranes leads to relaxation. SIAM J. Math. Anal. 38(2), 657–680 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Dacorogna, B.: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences, vol. 78, 2nd edn. Springer, New York (2008)

  • Davidovitch, B.: Period fissioning and other instabilities of stressed elastic membranes. Phys. Rev. E 80, 025202 (2009)

    Article  Google Scholar 

  • Dinh, H.P., Démery, V., Davidovitch, B., Brau, F., Damman, P.: From cylindrical to stretching ridges and wrinkles in twisted ribbons. Phys. Rev. Lett. 117, 104301 (2016)

    Article  Google Scholar 

  • Friesecke, G., James, R.D.: The Föppl–von Kármán plate theory as a low energy \(\Gamma \)-limit of nonlinear elasticity. C. R. Math. 335(2), 201–206 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Gemmer, J., Sharon, E., Shearman, T., Venkataramani, S.C.: Isometric immersions, energy minimization and self-similar buckling in non-Euclidean elastic sheets. Europhys. Lett. 114(2), 4 (2016)

    Article  Google Scholar 

  • Gioia, G., Ortiz, M.: Delamination of compressed thin films. Adv. Appl. Mech. 33, 119–192 (1997)

    Article  MATH  Google Scholar 

  • Green, A.E.: The elastic stability of a thin twisted strip. II. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 161(905), 197–220 (1937)

    Article  MATH  Google Scholar 

  • Jin, W., Sternberg, P.: Energy estimates for the von Kármán model of thin-film blistering. J. Math. Phys. 42(1), 192–199 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Kohn, R.V.: Energy-driven pattern formation. In: Proceedings of the International Congress of Mathematicians, vol. 1, pp. 359–383 (2006)

  • Kohn, R.V., Nguyen, H.-M.: Analysis of a compressed thin film bonded to a compliant substrate: the energy scaling law. J. Nonlinear Sci. 23(3), 343–362 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Paulsen, J.D., Hohlfeld, E., King, H., Huang, J., Qiu, Z., Russell, T.P., Menon, N., Vella, D., Davidovitch, B.: Curvature-induced stiffness and the spatial variation of wavelength in wrinkled sheets. Proc. Natl. Acad. Sci. 113(5), 1144–1149 (2016)

    Article  Google Scholar 

  • Pipkin, A.C.: The relaxed energy density for isotropic elastic membranes. IMA J. Appl. Math. (Inst. Math. Appl.) 36(1), 85–99 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Strauss, M.J.: Variations of Korn’s and Sobolev’s equalities. Proceedings of Symposia in Pure Mathematics 23, 207–214 (1973)

    Article  MathSciNet  Google Scholar 

  • Taffetani, M., Vella, D.: Regimes of wrinkling in pressurized elastic shells. Philos. Trans. A Math. Phys. Eng. Sci. 375(2093) (2017). https://doi.org/10.1098/rsta.2016.0330

  • Temam, R., Strang, G.: Functions of bounded deformation. Arch. Ration. Mech. Anal. 75(1), 7–21 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Vandeparre, H., Piñeirua, M., Brau, F., Roman, B., Bico, J., Gay, C., Bao, W., Lau, C.N., Reis, P.M., Damman, P.: Wrinkling hierarchy in constrained thin sheets from suspended graphene to curtains. Phys. Rev. Lett. 106, 224301 (2011)

    Article  Google Scholar 

  • Witten, T.A.: Stress focusing in elastic sheets. Rev. Mod. Phys. 79, 643–675 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ethan O’Brien.

Additional information

Communicated by Felix Otto.

This work was partially supported by the National Science Foundation through Grants OISE-0967140 and DMS-1311833.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohn, R.V., O’Brien, E. The Wrinkling of a Twisted Ribbon. J Nonlinear Sci 28, 1221–1249 (2018). https://doi.org/10.1007/s00332-018-9447-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-018-9447-0

Keywords

Mathematics Subject Classification

Navigation