Skip to main content
Log in

Modeling and Analysis of a Nonlinear Age-Structured Model for Tumor Cell Populations with Quiescence

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We present a nonlinear first-order hyperbolic partial differential equation model to describe age-structured tumor cell populations with proliferating and quiescent phases at the avascular stage in vitro. The division rate of the proliferating cells is assumed to be nonlinear due to the limitation of the nutrient and space. The model includes a proportion of newborn cells that enter directly the quiescent phase with age zero. This proportion can reflect the effect of treatment by drugs such as erlotinib. The existence and uniqueness of solutions are established. The local and global stabilities of the trivial steady state are investigated. The existence and local stability of the positive steady state are also analyzed. Numerical simulations are performed to verify the results and to examine the impacts of parameters on the nonlinear dynamics of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akimenko, V., Anguelov, R.: Steady states and outbreaks of two-phase nonlinear age-structured model of population dynamics with discrete time delay. J. Biol. Dyn. 11(1), 75–101 (2016)

    Article  MathSciNet  Google Scholar 

  • Alzahrani, E.O., Asiri, A., El-Dessoky, M.M., Kuang, Y.: Quiescence as an explanation of Gompertzian tumor growth revisited. Math. Biosci. 254, 76–82 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Alzahrani, E.O., Kuang, Y.: Nutrient limitations as an explanation of Gompertzian tumor growth. Discrete Contin. Dyn. Syst. Ser. B 21(2), 357–372 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Araujo, R.P., McElwain, D.L.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull. Math. Biol. 66, 1039–1091 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Arino, O., Kimmel, M.: Asymptotic analysis of a cell-cycle model based on unequal division. SIAM J. Appl. Math. 47, 128–145 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Arino, O., Sánchez, E., Webb, G.F.: Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence. J. Math. Anal. Appl. 215, 499–513 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Ayati, B.P., Webb, G.F., Anderson, R.A.: Computational methods and results for structured multiscale models of tumor invasion. SIAM Multiscale Model. Simul. 5(1), 1–20 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Bertalanffy, L.V.: Quantitative laws in metabolism and growth. Q. Rev. Biol. 32, 217–231 (1957)

    Article  Google Scholar 

  • Bi, P., Ruan, S., Zhang, X.: Periodic and chaotic oscillations in a tumor and immune system interaction model with three delays. Chaos 24, 023101 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Breward, C.J.W., Byrne, H.M., Lweis, C.E.: A multiphase model describing vascular tumour growth. Bull. Math. Biol. 01, 1–28 (2004)

    Google Scholar 

  • Brikci, F.B., Clairambault, J., Ribba, B., Perthame, B.: An age-and-cyclin-structured cell population model for healthy and tumoral tissues. J. Math. Biol. 57(1), 91–110 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Busenberg, S.N., Iannelli, M., Thieme, H.R.: Global behavior of an age-sgructured epidemic model. SIAM J. Math. Anal. 22, 1065–1080 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Carlsson, J.: A proliferation gradient in three-dimensional colonies of cultured human glioma cells. Int. J. Cancer 20, 129–136 (1977)

    Article  Google Scholar 

  • Cherif, A., Dyson, J., Maini, P.K., Gupta, S.: An age-structured multi-strain epidemic model for antigenically diverse infectious diseases: a multi-locus framework. Nonlinear Anal. Real World Appl. 34, 275–315 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Congar, A.D., Ziskin, M.C.: Growth of mammalian multicellular tumour spheroids. Cancer Res. 43, 558–560 (1983)

    Google Scholar 

  • Dyson, J., Villella-Bressan, R., Webb, G.F.: Asynchronous exponential growth in an age structured population of proliferating and quiescent cells. Math. Biosci. 177, 73–83 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Florian, J.A., Eiseman, J.L., Parker, R.S.: Accounting for quiescent cells in tumour growth and cancer treatment. IEE Proc. Syst. Biol. 152(4), 185–192 (2005)

    Article  Google Scholar 

  • Folkman, J.: Role of angiogenesis in tumour growth and metastases. Semin. Oncol. 29, 15–19 (2002)

    Article  Google Scholar 

  • Folkman, J., Cotran, R.: Relation of vascular proliferation to tumour growth. Int. Rev. Exp. Pathol. 16, 207–248 (1976)

    Google Scholar 

  • Folkman, J., Hochberg, M.: Self-regulation of growth in three dimensions. Exp. Med. 138, 745–753 (1973)

    Article  Google Scholar 

  • Gabriel, P., Garbett, S.P., Quaranta, V., Tyson, D.R., Webb, G.F.: The contribution of age structure to cell population responses to targeted therapeutics. J. Theor. Biol. 311(21), 19–27 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin, M.E., Maccamy, R.C.: Non-linear age-dependent population dynamics. Arch. Ration. Mech. Anal. 54(3), 281–300 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Gyllenberg, M., Webb, G.F.: Age-size structure in populations with quiescence. Math. Biosci. 86, 67–95 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Gyllenberg, M., Webb, G.F.: Quiescence as an explanation of Gompertzian tumor growth. Growth Dev. Aging 53, 25–33 (1989)

    Google Scholar 

  • Gyllenberg, M., Webb, G.F.: Asynchronous exponential growth of semigroups of nonlinear operators. J. Math. Anal. Appl. 167, 443–467 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Hartung, N., Mollard, S., Barbolosi, D., Benabdallah, A., Chapuisat, G., Henry, G., Giacometti, S., Iliadis, A., Ciccolini, J., Faivre, C., Hubert, F.: Mathematical modeling of tumor growth and metastatic spreading: validation in tumor-bearing mice. Cancer Res. 74, 6397–6407 (2014)

    Article  Google Scholar 

  • Hubbard, M.E., Byrne, H.M.: Multiphase modelling of vascular tumour growth in two spatial dimensions. J. Theor. Biol. 316, 70–89 (2013)

    Article  MathSciNet  Google Scholar 

  • Inaba, H.: A semigroup approach to the strong ergodic theorem of the multi-state stable population process. Math. Popul. Stud. 1(1), 49–77 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Inaba, H.: Mathematical analysis of an age-structured SIR epidemic model with vertical transmission. Discrete Contin. Dyn. Syst. Ser. B 6(1), 69–96 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Laird, A.K.: Dynamics of tumor growth. Br. J. Cancer 18, 490–502 (1964)

    Article  Google Scholar 

  • Liotta, L.A., Saidel, G.M., Kleinerman, J.: Stochastic model of metastases formation. Biometrics 32, 535–550 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, D., Ruan, S., Zhu, D.: Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions. Math. Biosci. Eng. 9(2), 347–368 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), R1–R9 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Newton, P.K., Mason, J., Bethel, K., Bazhenova, L.A., Nieva, J., Kuhn, P.: A stochastic Markov chain model to describe lung cancer growth and metastasis. PLoS ONE 7(4), e34637 (2013)

    Article  Google Scholar 

  • Orme, M.E., Chaplain, M.A.J.: A mathematical model of vascular tumour growth and invasion. Math. Comput. Model. 23(10), 43–60 (1996)

    Article  MATH  Google Scholar 

  • Pinho, S.T.R., Freedman, H.I., Nani, F.: A chemotherapy model for the treatment of cancer with metastasis. Math. Comput. Model. 36, 773–803 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Ramis-Conde, I., Chaplain, M.A.J., Anderson, A.R.A.: Mathematical modeling of cancer cell invasion of tissue. Math. Comput. Model. 47, 533–545 (2008)

    Article  MATH  Google Scholar 

  • Spinelli, L., Torricelli, A., Ubezio, P., Basse, B.: Modelling the balance between quiescence and cell death in normal and tumour cell populations. Math. Biosci. 202, 349–370 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Tan, W.Y.: A stochastic model for the formation of metastatic foci at distant sites. Math. Comput. Model. 12(9), 1093–1102 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Tyson, D.R., Garbett, S.P., Frick, P.L., Quaranta, V.: Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data. Nat. Methods 9(9), 923–928 (2012)

    Article  Google Scholar 

  • Ward, J.P., King, J.R.: Mathematical modelling of avascular-tumour growth. IMA J. Math. Appl. Med. Biol. 14, 39–69 (1997)

    Article  MATH  Google Scholar 

  • Ward, J.P., King, J.R.: Mathematical modelling of avascular-tumour growth II: modelling growth saturation. IMA J. Math. Appl. Med. Biol. 16, 171–211 (1999)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the two anonymous reviewers and the handling editor for their helpful comments and suggestions which helped us in improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigui Ruan.

Additional information

Communicated by Trachette Jackson.

This research was supported by the National Natural Science Foundation of China (11401060, 11401117, 11401217, 11771168), the Basic and Advanced Research Project of Chongqing (cstc2016jcyjA0412), the Program of Chongqing Innovation Team Project in University (CXTDX201601022) and Chongqing Municipal Education Commission (KJ1600522, KJ1705136).

Existence and Uniqueness of Solutions

Existence and Uniqueness of Solutions

Consider a Banach space \(\mathbf {X}=L^1(0,a^+)\times L^1(0,a^+)\) endowed with the norm \(||\phi ||=||\phi _1||+||\phi _2||\) for \(\phi (a)=(\phi _1(a),\phi _2(a))^T\in \mathbf {X}\), where \(||\cdot ||\) is the norm in \(L^1\) and \(v^T\) is the transpose of the vector v.

Now we define a linear operator \(A: D(A)\subset \mathbf {X}\rightarrow \mathbf {X}\) by

$$\begin{aligned} (A\phi )(a):=\left( -k\frac{d}{da}\phi _1(a), -k\frac{d}{da}\phi _2(a)\right) ^\mathrm{T}. \end{aligned}$$
(A.1)

The domain D(A) is given as

$$\begin{aligned} D(A)= & {} \left\{ \phi \in \mathbf {X}_+:=L_+^1(0,a^+)\times L_+^1(0,a^+):\ \phi _1,\phi _2\in AC[0,a^+], \right. \\&\left. \phi (0)=(\phi _1(0),\phi _2(0))^T\right\} , \end{aligned}$$

where \(L_+^1(0,a^+)\) denotes the positive cone of \(L^1(0,a^+)\) and \(AC[0,a^+]\) is the set of absolutely continuous functions on \([0,a^+)\), \(\phi _1(0)=2(1-f)\int _0^{a^+} \beta (a,N(t))\phi _1(a)\hbox {d}a\) and \(\phi _2(0)=2f\int _0^{a^+} \beta (a,N(t))\phi _1(a)\hbox {d}a\). We also define a nonlinear operator \(F: \mathbf {X}_+\rightarrow \mathbf {X}\) by

$$\begin{aligned} (F\phi )(a):= \bigg (\begin{array}{cc} -\mu (a)\phi _1(a)-\beta (a,N)\phi _1(a)+\sigma (a)\phi _2(a) \\ -\mu (a)\phi _2(a)-\sigma (a)\phi _2(a)\end{array} \bigg ). \end{aligned}$$
(A.2)

Based on Assumption (\(\text{ H }_1\)), it is not difficult to prove that the operator F is Lipschitz continuous and there exists a positive constant \(r>0\) such that

$$\begin{aligned} (I+rF)(\mathbf {X}_+)\subset \mathbf {X}_+, \end{aligned}$$
(A.3)

where I denotes the identity operator. The proof of this result can be referred to Inaba (2006).

Set \(u(t)=(P(t,\cdot ),Q(t,\cdot ))^T\). Then system (2.1)–(2.3) can be formulated as a nonlinear Cauchy problem on the Banach space \(\mathbf {X}\):

$$\begin{aligned} \frac{\hbox {d}u(t)}{\hbox {d}t}=Au(t)+F(u(t)),\quad u(0)=u_0\in \mathbf {X}, \end{aligned}$$
(A.4)

where \(u_0(a)=(P_0(a),Q_0(a))^\mathrm{T}\). We can see that operator A generates a \(C_0\)-semigroup \(\{\hbox {e}^{tA}\}_{t\geqslant 0}\) and there exist numbers \(M\geqslant 1\) and \(\alpha >0\) such that

$$\begin{aligned} ||\hbox {e}^{tA}||\leqslant M\hbox {e}^{\alpha t}. \end{aligned}$$
(A.5)

Let \(r>0\) be a constant such that (A.3) holds. Using this r and according to Busenberg et al. (1991), abstract Cauchy problem (A.4) can be rewritten as

$$\begin{aligned} \frac{\hbox {d}u(t)}{\hbox {d}t}=\left( A-\frac{1}{r}\right) u(t)+\frac{1}{r}(I+rF)u(t),\quad u(0)=u_0\in \mathbf {X}. \end{aligned}$$
(A.6)

Investigating problem (A.6), we obtain the mild solution by the solution of the integral equation

$$\begin{aligned} u(t)=\hbox {e}^{-\frac{1}{r}t}\hbox {e}^{tA}u_0+\frac{1}{r}\int _0^t\hbox {e}^{-\frac{1}{r}(t-s)}\hbox {e}^{(t-s)A}(I+rF)u(s)\hbox {d}s. \end{aligned}$$

Let \(\{S(t)\}_{t\geqslant 0}\) be the semiflow defined by the solutions of the above variation of constants formula. Then, \(S(t)u_0\) can be given as the limit of the iterative sequence \(\{u^n\}_{n\geqslant 0}\) such that

$$\begin{aligned} \left\{ \begin{array}{ll} &{}\displaystyle u^0(t)=u_0,\\ &{}\displaystyle u^{n+1}(t)=\hbox {e}^{-\frac{1}{r}t}\hbox {e}^{tA}u_0 +\frac{1}{r}\int _0^t\hbox {e}^{-\frac{1}{r}(t-s)}\hbox {e}^{(t-s)A}(I+rF)u^n(s)\hbox {d}s. \\ \end{array}\right. \end{aligned}$$

Notice that \(u^{n+1}\) is a linear convex combination of \(\hbox {e}^{tA}u_0\in \mathbf {X}_+\) and \(\hbox {e}^{(t-s)A}(I+rF)u^n\in \mathbf {X}_+\). Then, based on the positivity of \(\hbox {e}^{tA}\) and \(I+rF\), we conclude that \(u^{n+1}\in \mathbf {X}_+\) if \(u^n\in \mathbf {X}_+\) by applying (A.3). It follows from the Lipschitz continuity of F that \(\{u^n\}\) converges to the mild solution \(S(t)u_0\in \mathbf {X}_+\) uniformly. Applying (A.5), we have the estimate

$$\begin{aligned} ||u(t)||\leqslant M\hbox {e}^{(\alpha -\frac{1}{r})t}||u_0||+\frac{MK}{r}\int _0^t\hbox {e}^{(\alpha -\frac{1}{r})(t-s)}||u(s)||\hbox {d}s, \end{aligned}$$

where \(K:=||I+rF||\). From the Gronwall inequality, we can estimate that:

$$\begin{aligned} ||u(t)||\leqslant ||u_0||M\hbox {e}^{(\alpha -\frac{1-MK}{r})t}. \end{aligned}$$

Because the norm of the local solution grows at most exponentially as time evolves, it can be extended to a global one. Hence, the solution \(S(t)u_0, t > 0,\) is global.

Finally, we say that Cauchy problem (A.4) has a unique mild solution \(S(t)u_0\in \mathbf {X}_+\) for each \(u_0\in \mathbf {X}_+\), and \(\mathbf {X}_+\) is positively invariant with respect to the semiflow \(\{S(t)\}_{t\geqslant 0}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Chen, J., Pang, J. et al. Modeling and Analysis of a Nonlinear Age-Structured Model for Tumor Cell Populations with Quiescence. J Nonlinear Sci 28, 1763–1791 (2018). https://doi.org/10.1007/s00332-018-9463-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-018-9463-0

Keywords

Mathematics Subject Classification

Navigation