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Abstract. We develop a theory for distributed branch points and investigate their role
in determining the shape and influencing the mechanics of thin hyperbolic objects. We
show that branch points are the natural topological defects in hyperbolic sheets, they
carry a topological index which gives them a degree of robustness, and they can influence
the overall morphology of a hyperbolic surface without concentrating energy. We develop
a discrete differential geometric (DDG) approach to study the deformations of hyperbolic
objects with distributed branch points. We present evidence that the maximum curva-
ture of surfaces with geodesic radius R containing branch points grow sub-exponentially,

O(ec
√
R) in contrast to the exponential growth O(ec

′R) for surfaces without branch points.
We argue that, to optimize norms of the curvature, i.e. the bending energy, distributed
branch points are energetically preferred in sufficiently large pseudospherical surfaces.
Further, they are distributed so that they lead to fractal-like recursive buckling patterns.

MSC: 53C42 (Primary) 53A70, 53C80, 35Q74, 74K99 (Secondary)

1. Introduction

Leaves, flowers, fins, wings and sails are examples of the ubiquity of thin sheets in natural
and engineered structures. These objects often display intricate rippling and buckling pat-
terns around their edges. Figure 1 displays some of the complex shapes of leaves and flowers
that result from such hierarchical, “multiple-scale” buckling. In the physics literature, a re-
lation between these buckling patterns and the growth of a leaf at its margins was first iden-
tified by Nechaev and Voituriez [NV01] (See also [SRM+02, SMS04, SRS07, LM11, SS18]).
This phenomenon is not restricted to living organisms, where it might be explained as a
genetic trait selected for by evolution; it is seen in torn plastic sheets [SRS07]. Also, a
wavy pattern can be induced in a naturally flat leaf; Sharon et al. show that application of
the growth hormone auxin to the edge of an eggplant leaf, which is naturally flat, induces
growth at the margin, ultimately causing buckling out of plane [SMS04].

Qualitatively similar patterns are observed in torn plastic [SRM+02, SRS07] and tem-
perature sensitive hydrogels [KES07, KHB+12]. These patterns, and their bifurcations,
have been studied intensively over the last 20 years [SRM+02, Mar03, MSSR03, AB03,
KES07, ESK09, KVS11, GV13]. The changes to the internal structure during the growth
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(a) (b) (c)

Figure 1. (a) A leaf with regular undulations (photo by TS). (b) An Iris
with 3 generations of undulations (photo by SV). (c) Curly mustard leaves
with multiple generations of buckling (photo by J Watkins, U. Arizona).

of a leaf, or through the stretching of a plastic sheet at a tear, result in surfaces whose
intrinsic geometries, i.e. Riemannian metrics, are no longer “compatible” with a flat shape;
significant external forces compressing the elastic sheet would need to be imposed for the
surface to lay flat. The analogy between the localized stretching near the edge of a torn
plastic sheet and the preferential growth of leaves along to their edge motivates the need for
a purely mechanical explanation for the observed self-similar, fractal-like buckling patterns
[MSSR03, AB03, SRS07, LM09, ESK13, GSSV16].

Hydrogels have emerged as a useful system for exploring thin sheets with complex geome-
tries in a controllable and reproducible manner [KES07, EKAS07, KHB+12]. Experimental
techniques can prescribe a desired Riemannian metric in a hydrogel sheet that is initially
flat, but acquires the programmed metric upon “activation” [KES07, KHB+12, KHHS12].
A variety of environmental stimuli, such as a shining light or temperature changes can
activate the programmed metric. A gel sheet that swells more near the center leads to an
ultimately spherical shape. Alternatively, if the differential swelling is larger near the mar-
gins and reproduces the effect seen in leaves, producing a wavy surface [KES07, EKAS07,
HWQ+18]. Hydrogels which undergo such controlled shape transitions, due to a switch in
the metric, have a variety of potential applications in medical devices, micro- and nano-
scale robotics and flexible electronics.

Another “experimental” system, less quantitative, but beautifully pairing art and math-
ematics is ‘hyperbolic crochet’ [HT01, Mey20, WW15]. Through crochet, artists and math-
ematicians have rendered embeddings of (subsets of) the hyperbolic plane H2 in R3. Hy-
perbolic crochet is constructed by increasing the perimeter exponentially with the radius.
Sprawling hyperbolic crochet provides striking resemblance to sea creatures and plant life
and has been exhibited through ‘The Crochet Coral Reef project’ [WW15]. In ‘Floraform’,
a project inspired by the differential growth in plant structures and the ruffles of lettuce
sea slugs, the authors simulate growth of a thin surface using techniques from differential
geometry and physics, to uncover novel design principles and also to create art [LR20].
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There is remarkable unity of form in leaves and hyperbolic hydrogels [HWQ+18], in
corals and crochet [WW15], in sea slugs and jewellery made using simulated differential
growth [LR20]. Why is this so? This is the fundamental question we seek to address in
this paper – Why do systems, with completely different physics, some directed by complex
evolutionary processes and others generated by simple mathematical rules, end up with
similar fractal-like buckling patterns?

A commonly held explanation is that hyperbolic surfaces, i.e. objects whose perimeter
grows exponentially with the radius, develop complex buckling patterns because there are
no smooth ways to embed them in R3 without stretching [HT01]. Putative evidence for
this picture includes results that imply a dependence of the buckling wavelength on the
thickness of the sheet [AB03, KVS11, BK14a, VSJ+13] suggesting a competition between
localized stretching energy and regularization from bending energy. However, these scaling
laws arise from (sometimes implicit) boundary or “forcing” conditions. There are no proofs
(yet) that these scaling laws also apply to free sheets. Theorems on non-existence [Hil01,
Hol02] and singularities [Ams55, Efi64] for isometric immersions of complete surfaces with
negative curvature are sometimes invoked in this context. This argument, however, is a
misunderstanding of the results in [Hil01, Efi64] which apply to complete surfaces that
are necessarily unbounded. Any finite piece of a smooth hyperbolic surface can always be
smoothly and isometrically embedded in R3 [HH06].

As we argue in this paper, the answer is somewhat more subtle, and it is tied to the
regularity of the allowed configurations of a hyperbolic sheet in R3. In particular, we
demonstrate that the class of C1,1 isometric immersions (no stretching, uniformly bounded
curvatures that are not necessarily continuous) are “flexible” while C2 (continuous curva-
tures) isometric immersions are “rigid”. ‘Singular’ C1,1 isometries can have substantially
smaller elastic energy than ‘smooth’ C2 isometries, which seems, on the surface, completely
counter-intuitive. Further, the organizing principle for minimizing the energy of C1,1 isome-
tries is approximate “local” balance between the principal curvatures [GSSV16], and this
naturally leads to fractal-like buckling patterns, as we illustrate in this work. The key to
the flexibility of C1,1 immersions is a novel topological defect in pseudospherical surfaces–
branch points [Kir01, GV11] that are the principal objects of interest in this work.

After a review of non-Euclidean elasticity in §2, we present our main results in §3,
§4 and §5. We conclude with a short discussion of our results and their implications in
§6. We believe this work will be of interest to readers with diverse backgrounds, so we
summarize our key results here to give readers an overview of the entire paper in broadly
accessible language. This introduction is necessarily informal, and we refer the readers to
the discussion in the body of the paper for the precise mathematical statements.

We define branch points in Definition 3.6. At “regular points”, a surface negative Gauss
curvature is saddle-shaped and has 4 ‘sectors’, two above and two below the tangent plane.
In contrast, at a branch point, the surface has 2m > 4 sectors. We construct pseudospher-
ical immersions containing branch points by assembling multiple sectors together –
Prop. 3.10. Given 2m ≥ 4 smooth curves γi, originating at a point p, tangent to a com-
mon plane through p, and with alternating torsions ±1, there is a branched pseudospherical
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surface, with bounded principal curvatures, that contains (sufficiently small segments of)
the curves γi.

Our next main result is that branched points are topological defects since they carry a
topological charge that cannot be smoothed away. A key preliminary step is Definition 3.18.
that identifies the appropriate quantity which measures the topological charge.
Thm. 3.22. If a pseudospherical surface S can be approximated in W 2,2

loc , i.e. the local
difference in curvatures as measured by the elastic bending energy can be made as small as
desired, through surfaces with bounded curvature and no branch points, then the surface
S itself cannot have branch points.

In §3.4 we outline a procedure we call surgery, that allows us to add additional branch
points to surfaces (See Lemma 3.24). We then generalize the classical sine-Gordon equation
for smooth pseudospherical surfaces, ∂uvϕ = sinϕ, to surfaces with branch points.
Thm. 3.27. With an appropriate definition of ϕ(u, v), the angle between the asymptotic
directions as a function of the asymptotic coordinates, we have∮

∂Γ

1

2
(∂vϕdv − ∂uϕdu) =

∫∫
Γ

sin(ϕ)dudv − π
∑
pi∈Γ

(mi − 2)

where Γ is any domain bounded by asymptotic curves and the correction is the π times
the sum of the topological charges, of all the branch points contained in Γ.

In §4.1 we introduce a new class of discrete nets that represent the extrinsic geometry of
pseudospherical surfaces (i.e. the second fundamental form) in intrinsic coordinates, and
allow for branch points. This is useful in applications to the elasticity of thin sheets, since it
naturally discretizes the class of low-energy (isometric) deformations of a pseudospherical
surfaces. Using this discretization, we formulate Algorithm 4.1, a greedy algorithm for
finding (heuristically) the distribution of branch points that optimizes the elastic energy,
i.e. solving the min-max problem of finding arg minr ess supx∈Ω |H(x)| over immersions
r : Ω→ R3 with branch points where H(x) is the mean curvature at r(x).

In §5 we present a ‘physics-style’ back of the envelope calculation that allows us to
estimate the energy and the number of wrinkles of nearly energy optimal immersions of
disks with constant negative curvature, while allowing for branch points. Our arguments
reveal the role of the branch points in significantly decreasing the elastic energy, from
log inf E ∼ R for smooth immersions to log inf E ∼

√
R for branched immersions of a disk

of radius R, cf. Eqs. (5.1) and (5.2). We compare our estimates with numerical simulations.

2. Non-Euclidean elasticity

We model our elastic bodies as hyperelastic materials, so that the observed configurations
are minimizers of an elastic energy functional. The functional quantifies the elastic energy
due to strains in a particular deformed configuration of the body relative to the intrinsic
(non-Euclidean) geometry which can be represented as a Riemannian manifold (B,G).
This suggests a candidate for the resulting three-dimensional elastic energy

(2.1) I[ỹ] =

∫
B
‖∂iỹ · ∂j ỹ −Gij‖2 dV,
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with ỹ : B → R3 representing the deformation [AB02, MSSR03, ESK09]. Though Eq. (2.1)
is arguably a prototypical model elastic energy, this functional is not appropriate from vari-
ational perspective [LRP11] because of the possibility of fine-scale, orientation-reversing
“folded structures”. An appropriate elastic energy is defined using a polar decompo-
sition of the deformation gradient ∇ỹ to measure its deviation from an “energy well”
F(x) = {RA(x) : R ∈ SO(3)}, where A =

√
G is the symmetric, positive definite root of

the Riemannian metric G [LRP11]. F(x) contains all the orientation preserving isometric
linear maps, from the tangent space TxB to R3 and this defines the elastic energy

(2.2) I[ỹ] =

∫
B

dist2 (∇ỹ(x),F(x)) dx,

The fully 3-dimensional variational problem for (2.2) is analytically intractable motivating
the development of reduced models for shells, plates and rods [Lov92, Tim59]. For plates,

B = Ω×
(
−h

2
,
h

2

)
, Gij =

g11 g12 0
g21 g22 0
0 0 1

 ,

the Föppl-von Kármán approximation [Cia80] is one such asymptotic reduction of the full
3-dimensional system to a 2-dimensional system on the center-surface Ω in the limit of
vanishing thickness h→ 0. Here and henceforth g will represent the 2d metric on Ω. For a
sheet of thickness h, scaling the in- and out-of-plane displacements to be O(

√
h) and O(h)

respectively gives an energy functional, called the FvK energy in the physics literature:

(2.3) Eh = h Estretching + h3 Ebending,

The resulting variational formulation, also known as the Föppl-von Kármán (FvK) equa-
tions, are coupled PDEs representing the equilibrium conditions associated with the re-
duced energy and have been used extensively to model thin elastic sheets. Efrati et al.
extended the FvK theory to non-Euclidean plates, i.e. cases where the reference metric
g is not the Euclidean metric [ESK09]. Using the formalism in [ESK09], the energy of a
non-Euclidean plate with elastic modulus Y , Poisson ratio ν = 0, and setting y = ỹ|Ω is

Eh =
Y h

2

∫
Ω
‖dy · dy − g‖2dA+

Y h3

24

∫
Ω

(4H2 − 2K)dA.(2.4)

The first integral measures the stretching energy, quantifying the deviation of the induced
metric from an assumed reference metric. The second integral, also known as the Willmore
functional, describes the energy due to bending. H = κ1+κ2

2 is the mean curvature and
K = κ1κ2 is the Gauss curvature, where κ1 and κ2 are the principal curvatures of the
immersion y : Ω→ R3. In this work K = −1 and we expect Eh ∼ h3 if y is an isometry.

The energy functional (2.3) obtains from making an ansatz “lifting” an immersion y :
Ω → R3 of the center surface to a deformation ỹh : B → R3 given by the Kirchhoff-Love
extension that maps fibers orthogonal to the center surface Ω in B to fibers orthogonal
to the image y(Ω) in R3 (isometrically for ν = 0). In contrast, rigorous derivations of
the h→ 0 limit energy for plates are ansatz-free and are obtained through Γ–convergence
[FJM02, FJM06]. In the Γ–convergence approach, one assumes that, for a sequence of
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mappings ỹh : Ω×[−h
2 ,

h
2 ]→ R3, the elastic energy satisfies a uniform bound h−αI[ỹh] ≤ C,

where I[·] is the “bulk” elastic energy defined in (2.2). With no further assumptions, one
shows that a subsequence of the immersions ỹh (appropriately rescaled) converges (in an
appropriate sense). One then defines a space of limit configurations and a limit energy Ē,
so that for any allowed limit configuration ȳ, one can recover a sequence of configurations
ỹh such that ỹh → ȳ, h−αI[ỹh] → Ē[ȳ]. The limiting space and the limit energy can
depend on α, and, in general, one obtains a hierarchy of limiting elastic energy functionals,
distinguished by the scaling of the energy with h [FJM06, LMP14].

In our work, we are in the scaling regime I[ỹh] ≤ Ch3, and the corresponding limit
theory is called the Kirchhoff plate theory in the literature on rigorous dimension reduction
for slender elastic objects [FJM06, Sch07b, LRP11]. The scaled energy h−3I converges

(2.5)
24h−3

Y
I[y]

Γ−→ E2[y] =

{∫
(κ2

1 + κ2
2) dA if y ∈W 2,2, dy · dy ≡ g,

+∞ otherwise.

to the isometry restricted Willmore energy, for various problems in incompatible elastic-
ity of thin objects [Sch07a, Sch07b, LRP11, KS14, BLS16]. In this work, we will also
consider an alternative bending energy, the isometry restricted max curvature E∞[y] =
maxΩ(|κ1|, |κ2|) for y ∈ W 2,∞, dy · dy ≡ g and +∞ otherwise. For all bounded domains,
the limit (Willmore) energy E2 is bounded by (the square of) the E∞, so finding con-
figurations with E∞ finite is sufficient for showing the existence of finite Willmore energy
isometries. We also note that κ1κ2 = −1 a.e. for C1,1 surfaces with K = −1. Consequently,

2|H(x)| = |κ1(x) + κ2(x)| ≤ max(|κ1(x)|, |κ2(x)|) ≤ 2|H(x)|+ 1

so that, for surfaces of constant curvature, so the max-curvature energy E∞ is essentially
the same as the max mean curvature maxx∈Ω |H(x)|.

A significant obstruction to finding these configurations is the singular edge ; see Exam-
ple 3.4 and Fig. 2. The singular edge is an example of a cuspidal edge singularity, and is a
generic feature of isometric immersions of H2 into R3 [Ams55, IM06]. One of the principal
curvatures diverges at the singular edge so the W 2,∞ energy is locally unbounded. As we
show elsewhere, the Willmore energy also diverges in any neighborhood of a point on the
singular edge. Our principal concern in this work will therefore be the question of how to
evade or stave off the occurrence of a singular edge.

The question of isometric embeddings and immersions of a Riemannian 2-manifold (Ω, g)
as a surface in R3 has a long history, reviewed in [HH06, Chaps. 2 & 3, §4.2]. We are specif-
ically interested in the case of pseudospherical surfaces, i.e. when g has constant negative
curvature [Sto89, Chap. 4]. In 1901, Hilbert showed that there exists no geodesically
complete, analytic immersion into R3 of a metric with constant negative curvature [Hil01].
This result was later extended by Efimov to C2 isometric immersions into R3 for any metric
with negative curvature bounded away from zero [Efi62, Mil72]:

Theorem (Efimov). No surface with negative Gauss curvature bounded away from zero
K ≤ −δ < 0 can be C2 immersed in Euclidean 3-space so as to be complete in the induced
Riemannian metric.
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Alternatively, Nash [Nas54] and Kuiper [Kui55] showed that, for a general metric g,
there exists a C1 isometric immersion, indeed even an embedding:

Theorem (Nash-Kuiper). Let (M, g) be an m-dimensional Riemannian manifold and f :
M→ Rn a short immersion (resp. embedding), where n ≥ m + 1. Given an ε > 0, there
exists an isometric immersion (resp. embedding) fε of class C1 satisfying

(2.6) g(v, w) = 〈dfε(v), dfε(w)〉,
which is uniformly ε-close to f in the Euclidean norm on Rn:

(2.7) ‖f(x)− fε(x)‖ < ε for all x ∈M.

The juxtaposition of these two results provides a strong motivation to explore isometric
immersions with regularities between C1 and C2. There is a substantial body of work
investigating the existence of isometric immersions of surfaces into R3 with Hölder regu-
larity in the class C1,α [Bor59, Bor04, CDLS12, DLIS18, DLI20], with proofs of flexibility
for α < 1/5 and rigidity for α > 2/3. Our interest is in isometric immersions with W 2,2

Sobolev regularity [Pak04], motivated by the need to define a meaningful bending (i.e.
Willmore) energy for the immersion, as is clear from the reduced energy (2.5). Provided
that the space of W 2,2-isometric immersions is nonempty, containing potentially many
immersions, we use the elastic energy as a selection process: the observed surface is the
isometric immersion which minimizes the bending energy.

Remark 2.1. Bella and Kohn prove that wrinkles do arise through a competition between
stretching and bending energies, for h > 0, with additional “forcing” conditions that restrict
the class of allowed deformations [BK14a, Thm. 1]. In this circumstance, the W 2,2 energy
of minimizers does not stay bounded as h→ 0, i.e. the limiting isometries are not W 2,2.

We consider a different scenario in this work, namely free sheets with no imposed forces or
boundary conditions. To analyze equilibrium states we have to impose boundary conditions
that are appropriate for isometric immersions of free sheets, namely zero net forces and
moments [GMVM19]. In this work, we take a variational perspective for the problem of
minimizing (2.5), or the simpler problem of minimizing E∞ = κmax. Our candidate states
are therefore “test functions” for the energy and, unlike equilibria, they need neither satisfy
the appropriate Euler-Lagrange equations nor the corresponding boundary conditions.

3. Pseudospherical surfaces with branch points

The preceding discussion highlights the role of the regularity of isometries. Beyond the
existence/non-existence of isometries, it is crucial whether a candidate isometry is in W 2,2.
This motivates the following problem: (Ω, g) is a Riemannian 2-manifold.

(3.1) Find y : Ω→ R3 such that y ∈W 2,2
loc (Ω,R3), dy · dy = g a.e.

If y : Ω → R3 is C1, the Gauss normal map is given by N =
∂1y × ∂2y

‖∂1y × ∂2y‖
with ∂i =

∂

∂xi

for (arbitrary) coordinates (x1, x2) on Ω. If y and g are C2, it follows that N is C1 and
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Gauss’ Theorema Egregium implies that (3.1) is equivalent to the Monge-Ampere Exterior
differential system (EDS) [IL03, §6.4]:

(3.2) N · dy = 0, N∗(dΩ) = κ dA, κ ≡ κ[g] is determined by g,

where dΩ is the area form on the sphere S2 and κ is the Gauss curvature.
Classical results in differential geometry imply that smooth solutions of (3.2) with κ < 0

are hyperbolic surfaces and locally saddle shaped. In contrast, the curly mustard leaf in
Fig. 1c is “frilly”, i.e. buckled on multiple scales with a wavelength that refines (“sub-
wrinkles”) near the edge [SMS04]. This “looks” very unlike smooth saddles (cf. Fig. 4a).

If Ω ⊂ R2 is a bounded domain with a smooth boundary, and g is a smooth metric on
Ω with negative curvature, g can be extended to a smooth metric ḡ on R2 with Gauss
curvature κ[ḡ] < 0 decaying (as rapidly as desired) at infinity. The existence of isometric
immersions into R3, of smooth metrics with decaying negative curvature [Hon93], there-
fore implies that bounded smooth hyperbolic surfaces can be smoothly and isometrically
embedded in R3. A smooth (C2 is sufficient) hyperbolic surface cannot refine its buckling
pattern and is thus “non-frilly”, as we show in §3.2. Why do we see frilly shapes in natural
surfaces, as in Fig. 1c, rather than a smooth saddle (see Fig. 4a)?

We have addressed aspects of this puzzle in recent work [GV11, GV12, GV13, GSSV16,
AV20] and find that frilly surfaces, somewhat counterintuitively, can have smaller bending
energy than the smooth saddle, despite being (seemingly) rougher. It is true that C2

hyperbolic surfaces are saddle-like near every point. A key result in this work is the
identification of a topological invariant, the winding number (ramification index) of the
normal map at a branch point, that distinguishes sub-wrinkled surfaces from saddles locally
(See Lemma 3.19 and Fig. 4). With branch points, the surfaces are only C1,1, like the
monkey saddle in Fig. 4c, but the gain the additional flexibility to refine their buckling
pattern and thus lower their energy [GSSV16]. This flexibility is not available to smooth
saddles, and constitutes a key property of surfaces with branch points [GSSV16].

The additional flexibility for C1,1 immersions of hyperbolic surfaces has been explored
since the 1960s. Rozendorn discussed the branched hyperbolic paraboloid as an important
example of a C1,1 hyperbolic surfaces [Roz92], and constructed C1,1 immersions of geodesi-
cally complete, uniformly negatively curved (K ≤ −δ < 0) surfaces that are smooth except
at finitely many points [Roz62a, Roz66, Roz92]. In contrast to Rozendorn’s construction
[Roz62a], with a focus on minimizing the “singular set” of C1,1 points and leaving the met-
ric “free”, the constructions in [GSSV16, GV11] exactly preserve a prescribed metric, but
need “larger” sets of singular C1,1 points. The goals for this approach include enlarging the
domain that can be immersed isometrically into R3 or optimizing the bending energy over
isometries. In this work we follow the latter approach and seek C1,1 isometric immersions
of a prescribed metric, namely one with constant negative curvature K = −1.

Definition 3.1 (Hyperbolic plane). The hyperbolic plane H2 is the maximally symmetric,
simply connected, 2-manifold with with constant negative curvature −1. An explicit model

for this space is the Poincaré disk x2 + y2 < 1 with the metric g =
4(dx2 + dy2)

(1− (x2 + y2))2
.
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3.1. Pseudospherical surfaces. Here and henceforth we will use the adjective pseudo-
spherical to mean “pertaining to subsets of the Hyperbolic plane”. We will build branched
C1,1 pseudospherical surfaces in R3 by patching together C2 immersions of subsets of H2,
such that the pieces join with continuous tangent planes. To this end, we collect and also
extend a few properties of C2 pseudospherical surfaces (See [Eis09, Chaps. V & VI] [RS02,
§1.1 & §1.2] and [DS16]).

(A) Every C2 immersion with K = −1 admits a pair of asymptotic coordinates (u, v)
(locally) so that parametrized surface (u, v) 7→ r(u, v) satisfies ru × rv 6= 0, N · ruu =
N · rvv = 0 where N = ± ru × rv/‖ru × rv‖ [HW51]. The sign choice in the definition
of N is immaterial if ‖ru × rv‖ never vanishes.

(B) By the Beltrami-Enneper theorem [Eis09, Chap. V], the unit-speed asymptotic curves
r(·, v0) and r(u0, ·) have constant torsions ±1. We choose the u and v coordinates
so that the corresponding asymptotic curves have torsions -1 and +1 respectively.
Since ru ⊥ N and rv ⊥ N , (ru, N × ru, N) is an orthonormal Frenet frame for the
u-asymptotic lines r(·, v0) and (rv, N × rv, N) is a frame for the v-asymptotic lines.
The Frenet-Serret formulae [Eis09, Chap. V] read

∂u

 ru
N × ru
N

 =

 0 κu 0
−κu 0 −1

0 1 0

 ru
N × ru
N

 ,

∂v

 rv
N × rv
N

 =

 0 κv 0
−κv 0 1

0 −1 0

 rv
N × rv
N

 .(3.3)

κu and κv are the geodesic curvatures of the u and v asymptotic lines.
(C) The Frenet-Serret equations yield Nu = N × ru so (ru, Nu, N) is a right-handed

orthonormal frame. Similarly, (rv,−Nv, N) is a right-handed orthonormal frame.
This gives the Lelieuvre formulae [RS02, §1.6]

ru(u, v) = Nu(u, v)×N(u, v),

rv(u, v) = −Nv(u, v)×N(u, v).(3.4)

(D) The Lelieuvre equations are consistent if and only if ∂v(ru) = ∂u(rv) which is equiva-
lent to the condition that the normal field (u, v) 7→ N(u, v) is Lorentz harmonic

(3.5) N ×Nuv = 0.

It immediately follows that ruv = Nu ×Nv.
(E) Note that Eqs. (3.4) and (3.5) and the signs of the torsions in (3.3) are invariant under

three separate symmetries, N → −N, u→ −u or v → −v. Also, the transformations
u→ −u, v → −v or N → −N , respectively, reverse the sign of the geodesic curvature
κu, reverse the sign of κv, and reverse the signs of both κu and κv in (3.3).

(F) Note that −u (resp. −v) is as much a valid asymptotic coordinate as is u (resp. v).
This is not an issue with global (smooth) asymptotic coordinates, but will be an issue
for the branched surfaces that are our principal objects of interest.
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We will define N so that it is continuous in situations where the underlying surface
is C1, independent of the specific asymptotic parametrization. Let ω be an orientation
(a non-vanishing 2 form) on this surface. If the surface is a graph (x1, x2, w(x1, x2)),
a canonical choice is ω = dx1 ∧ dx2. We define the normal N so that the orientation
ω on the surface is consistent with the cross product in the ambient space R3 i.e.
ω(X,Y ) = β(X × Y ) · N for all vector fields X,Y tangential to the surface and a
strictly positive function β. This is equivalent to defining

(3.6) N ≡ Nω = sign(ω(ru, rv))
ru × rv
‖ru × rv‖

= σ
ru × rv
‖ru × rv‖

where we have defined σ ≡ sign(ω(ru, rv)) to keep the notation compact. It is easy
to see that this definition of N is insensitive to “flips” u → −u or v → −v in the
asymptotic parametrization. A related issue is addressed in the definition of the
normal Nfront for a pseudospherical front in Ref. [DS16], where the consideration was
the potential vanishing of ‖ru × rv‖.

(G) If we define the angle between the asymptotic directions by cosϕ = ru · rv, this
definition is not invariant under the flips u → −u or v → −v. We therefore pick an
“invariant” definition for the angle between the asymptotic directions by

cos(ϕ) = σru · rv = −σNu ·Nv,

sin(ϕ) = σ(ru × rv) ·N
= ‖ru × rv‖

ruv = Nu ×Nv = −σ sinϕN(3.7)

For this definition, sinϕ ≥ 0 so 0 ≤ ϕ ≤ π. r is an immersion only if ru and rv
are linearly independent, so this precludes ϕ from attaining the values 0 or π on a
smooth pseudospherical surface. Initially, we work on open sets where ω(ru, rv) does
not change sign and ‖ru × rv‖ is nonvanishing.

(H) In terms of this angle ϕ and the normal N = Nω, the first and second fundamental
forms of the pseudospherical surface are given by

g = dr · dr = du2 + 2σ cosϕdudv + dv2

h = dNω · dr = −2σ sinϕdudv(3.8)

(I) Nu = N × ru and Nv = −N × rv are in the plane perpendicular to N that is spanned
by ru, rv. Indeed Nu is obtained by rotating ru by π/2 and Nv is rv rotated by −π/2.
Differentiating, and using (3.7), we get

Nuv = Nv × ru = −(N × rv)× ru
= N(ru · rv)− rv(ru ·N) = σ cosϕN = −(Nu ·Nv)N(3.9)

(J) To extract all the compatibility conditions encoded in (3.3), we also need the deriva-
tives of the Frenet frame for the u-lines with respect to v and vice versa. Recognizing
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that N × ru = Nu and combining the results in the previous items, we have

∂v

 ru
N × ru
N

 = σ

 0 0 − sinϕ
0 0 cosϕ

sinϕ − cosϕ 0

 ru
N × ru
N

 .

Writing these equations abstractly as ∂uF
u = AF u, ∂vF

u = BF u, where F u denotes
the frame (ru, Nu, N), compatibility ∂v(∂uF

u) = ∂u(∂vF
u) is equivalent to the zero-

curvature condition ∂vA − ∂uB + [A,B] = 0 [RS02, §1.2]. Computing the matrix
entries for this system, and the corresponding system for the frame F v, we get

κu = −∂uϕ, κv = ∂vϕ,

−∂v(κu) = ∂u(κv) = ϕuv = σ sinϕ,(3.10)

the Sine-Gordon equation for ϕ and relations between the geodesic curvatures κu, κv

of the asymptotic curves and the derivatives of ϕ. In obtaining this equation, we have
assumed that σ is a constant, so this only applies to open sets where ω(ru, rv) does
not change sign. In §3.5 we generalize the Sine-Gordon equation to situations where
σ can change sign (see Theorem 3.27).

We are now in position to define the basic building block of a branched pseudospherical
surface. We will follow the discussion in Ref. [DS16]:

Definition 3.2. A function (u, v) 7→ f(u, v) ∈ Rn is C1M if each component is C1, and
has continuous mixed partial derivatives fuv = fvu on the domain of f .

Note that C1M functions are not necessarily C2 and neither fuu nor fvv needs to exist.
Also, a smooth reparametrization (u, v) = g(r, s) of a C1M function f can yield a function
h(r, z) = f ◦ g(r, s) that is not C1M [DS16].

Definition 3.3. Let D ⊆ R2 be equipped with global coordinates (u, v). A C1M mapping
N : D → S2 is weakly (Lorentz) harmonic if

(1) Nu ·Nu > 0 and Nv ·Nv > 0 on D.
(2) N is Moutard, i.e. there is a continuous function ν : D → R such that Nuv = Nvu =

νN ([BS08, Thm. 1.12]).

Weakly harmonic mappings D → S2 allows us to generalize the class of smooth pseu-
dospherical surfaces [DS16]. In particular, if D is simply connected and N : D → S2 is
weakly harmonic, then there is a corresponding pseudospherical front, or PS-front for short
[DS16], i.e. a C1M solution r : D → R3 to the Lelieuvre equations (3.4), that is weakly
regular, i.e. ru · ru > 0, rv · rv > 0. PS-fronts allow for the possibility of singularities, i.e.
sets where r is not an immersion, and classical examples include the pseudosphere (see
[DS16, §6]), and Minding’s bobbin, as we discuss further in Ex. 3.4.

We also have a necessary and sufficient condition for ruling out such singularities – r is
an immersion at every point where N is an immersion, i.e. Nu ×Nv 6= 0 [DS16].

Example 3.4. A Minding’s bobbin, depicted in Fig. 2, is a surface of revolution given in
cylindrical polar coordinates (ρ, θ, z) by ρ(s) = κ−1 cosh(s), z(0) = 0, z′(s)2 + ρ′(s)2 = 1,
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where s is the arclength along a meridian and κ is the curvature of the ‘throat’ of the bobbin,
the equatorial circle s = 0. The induced metric is g = ds2 + ρ2dθ2 and the corresponding
Gauss curvature is K = −ρ′′(s)/ρ(s) = −1. The maximal extension of a Minding’s bobbin
has a singular edge at a finite distance from the equator, since it cannot be extended
smoothly beyond s = ±L,L = arcsinh(κ) where ρ′(s) = ±1, z′(s) = 0. Minding’s bobbin
has the topology of a cylinder S1× (−L,L) and its universal cover is a ‘strip’ R× (−L,L).
The diameter of any geodesic disk than can be smoothly and isometrically embedded in
the universal cover is therefore bounded by 2 arcsinh(κ) [GV11].

Figure 2. Minding’s bobbin with smooth asymptotic curves and cuspidal
singular edges. The normal Nω is also shown along an asymptotic curve.

In order to get a diameter 2R, it follows that the max curvature E∞ > κ > sinh(R).
Note that, this bound obtains from the throat, and not, as one might have imagined, from
the region near the singular edge. The longitudinal curvature is given by d

ds arcsin ρ′(s) =
cosh(s)√
κ2−sinh2(s)

, and it diverges as the distance to the singular edge to the power −1
2 [GSSV16].

In particular, the Willmore energy also diverges, logarithmically, on any neighborhood of a
point on the singular edge. For bobbins that can “contain” a disk with radius R, we have,

(3.11) inf E∞ ≥ inf
κ≥sinh(R)

max
(
κ, cosh(R)(κ2 − sinh2(R))−1/2

)
,

and optimization requires a “global” balance between the ‘azimuthal’ principal curvature
at the throat and the ‘longitudinal’ principal curvature near the edge.

Reflecting a pseudospherical surface of revolution about a plane through antipodal merid-
ians preserves the arc length parameter s 7→ s, inverts the torsion so u-asymptotic curves
map to v-asymptotic curves and vice versa, and also inverts angular derivatives ∂θ 7→ −∂θ.
It therefore follows that the vector ∂s ‖ (∂u + ∂v) and ∂θ ‖ (∂u − ∂v). Indeed, more is true.
The fact that the angular separation in θ between two u- (or v-) asymptotic curves is the
same at any ‘height’ z(s) (equivalently independent of the arc-length coordinate s) implies
that θ ∝ u− v for any pseudospherical surface of revolution. Consequently, we can choose
u, v such that ru · ru = rv · rv = 1, s = s(u+ v), θ = αu− αv for some constant α.
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With these ‘normalizations’ for the asymptotic coordinates u and v, Minding’s bobbin
can be expressed as s = s(u+ v) in terms of elliptic functions [Gra98, §21],[GV11]. Rather
than recapitulate the exact solutions, our goal here is to illustrate various features of PS-
fronts using Minding’s bobbin as an example.
∂θ = 1

2α(∂u − ∂v) is the Killing vector generating the azimuthal symmetry. For scalar
quantities q ∈ {s, ϕ, σ}, invariance under this symmetry implies q = q(u+ v). Comparing
the metric g = ds2 + κ−2 cosh2(s)dθ2 with the expression in asymptotic coordinates

g = du2 + 2σ cosϕdudv + dv2 =

{
cos2 ϕ

2 (du+ dv)2 + sin2 ϕ
2 (du− dv)2 σ = +1,

sin2 ϕ
2 (du+ dv)2 + cos2 ϕ

2 (du− dv)2 σ = −1,

we get, after setting ξ = u+ v,

ds

dξ
=

1 + σ

2
cos

ϕ

2
+

1− σ
2

sin
ϕ

2
α

κ
cosh(s(ξ)) =

1 + σ

2
sin

ϕ

2
+

1− σ
2

cos
ϕ

2
(3.12)

We can determine the constant α by imposing the requirement that, at the singular edge,
whether approached from a region with σ = 1 or from a region with σ = −1, we should get
α
κ cosh(s(ξ)) → 1. This suggests setting α = κ√

κ2+1
in (3.12) will yield a pseudospherical

surface of revolution with a profile ρ(s) = κ−1 cosh(s). This is indeed true as we now prove:
Lemma: Let κ > 0, σ ∈ {−1, 1} be given, and let s(ξ) be a solution to the ODE

(3.13)

(
ds

dξ

)2

+
1

κ2 + 1
cosh2(s) = 1.

Then, on domains where s′(u+ v) 6= 0,

(3.14) ϕ(u, v) = (1 + σ) arcsin

(
cosh(s(u+ v))√

κ2 + 1

)
+ (1− σ) arccos

(
cosh(s(u+ v))√

κ2 + 1

)
solves the sine-Gordon equation ∂uvϕ = σ sinϕ.

Proof. It is straightforward to verify that any solution of (3.13) followed by a definition of
ϕ through (3.14) will give s(ξ), ϕ that satisfy (3.12). These solutions are smooth whenever
σ is smooth, i.e. constant. Multiplying the two equations in (3.12) yields

d

dξ

[
sinh(s(ξ))√
κ2 + 1

]
=

cosh(s(ξ))√
κ2 + 1

(
ds

dξ

)
=

1

2
sinϕ.

Differentiating the second equation in (3.12) assuming σ is locally constant and dividing
by s′(ξ) 6= 0 from the first equation gives

sinh(s(ξ))√
κ2 + 1

=
1+σ

2 cos ϕ2 − 1−σ
2 sin ϕ

2
1+σ

2 cos ϕ2 + 1−σ
2 sin ϕ

2

(
ϕ′(ξ)

2

)
= σ

ϕ′(ξ)

2
∵ σ ∈ {−1, 1}

Combining these two equations, we get ∂uvϕ = ϕ′′(u+ v) = σ sinϕ. �
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Note that (3.13) is the statement of conservation for an energy for a unit mass particle
moving in a potential V (s) = 1

2(κ2+1)
cosh2(s) if we interpret ξ = u + v as time. The

corresponding orbits are bounded periodic functions s = s(ξ) and the turning points where
s′ = 0 are when s = ±L as expected. This mechanical analogy shows that, at the turning
points, s′(ξ) = 0 and s′′(ξ) = −V ′(s) 6= 0, and further, the solutions s = s(u+v) are ‘global’,
i.e exist for all (u, v) ∈ R2. Since ds2 = d(κ−1 cosh(s))2 + dz2, it follows from (3.13) that

(3.15)

(
dz

dξ

)2

=

(
1− sinh2(s)

κ2

)(
ds

dξ

)2

=
(κ2 − sinh2(s))2

κ2(κ2 + 1)

The right hand side vanishes quadratically in (L2−s2), so it follows that z′(ξc) = z′′(ξc) = 0
at the turning points ξc where s(ξc) = ±L and we can pick the square root so that z′(ξ) ≥ 0
for all ξ. Near a turning point, we therefore get

ρ(ξ) = ρc − c1(ξ − ξc)2 +O((ξ − ξc)3), z(ξ) = zc + c2(ξ − ξc)3 +O((ξ − ξc)4),

where ρc = ρ(ξc) = κ−1
√
κ2 + 1, zc = z(ξc) and c1, c2 > 0. The mapping

(3.16) (u, v) 7→ r(u, v) =

(
ρ(u+ v) cos

(
κ(u− v)√
κ2 + 1

)
, ρ(u+ v) sin

(
κ(u− v)√
κ2 + 1

)
, z(u+ v)

)
is not an immersion on the circles given by u + v = ξc and exhibits cuspidal singularities
at these points, as we illustrate in Fig. 2. Nonetheless, the asymptotic curves u 7→ r(u, v0)
are smooth and satisfy ru · ru = 1, and likewise for the curves v 7→ r(u0, v).

Defining the normal N =
ru × rv
‖ru × rv‖

yields, with a positive constant of proportionality,

N(u, v) ∝ s′(u+ v)

(
−dz
ds

cos

(
κ(u− v)√
κ2 + 1

)
,−dz

ds
sin

(
κ(u− v)√
κ2 + 1

)
,
sinh(s(u+ v))

κ

)
.

Since dz
ds = 0 at the turning points, this definition of the normal flips between N = ±e3 at

every turning point and is thus discontinuous. In contrast, the definition Nω = σ
ru × rv
‖ru × rv‖

,

σ = sgn(s′(u+ v)) yields a continuous (even C1M ) definition of the normal.
Using (3.13) with (3.15) and recognizing that dz

ds = σ
∣∣dz
ds

∣∣ we obtain

Nz = κ−1 sinh(s(u+ v)), σ = sgn(s′(u+ v)), θ = κ(κ2 + 1)−1/2(u− v)

Nω =
(
−σ
√

1−N2
z cos θ,−σ

√
1−N2

z sin θ,Nz

)
.(3.17)

Nω, in conjunction with the PS-front r in (3.16), satisfies the Lelieuvre equations (3.4).

Definition 3.5. An Amsler sector is a PS-front r : [0,∞) × [0,∞) → R3 such that the
the bounding u- and v-asymptotic curves r(·, 0) and r(0, ·) are geodesics in R3. A pseudo-
Amsler sector is a PS-front r : [0, u0)× [0, v0)→ R3 such that the one of the bounding u-
and v-asymptotic curves, either r(·, 0) or r(0, ·) is geodesic in R3.

Amsler and pseudo-Amsler sectors will play a fundamental role in this work. Amsler
sectors can be constructed by solving the sine-Gordon equation ϕuv = sinϕ on the first
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quadrant u ≥ 0, v ≥ 0 with boundary data ϕ(u, 0) = ϕ(0, v) = φ0 [Ams55]. These solutions
admit a self-similar reduction of the form ϕ(u, v) = ϕ(z), with z = 2

√
uv. This self-similar

ansatz gives ∂uv = 1
z∂z + ∂2

∂z2
and the sine-Gordon equation reduces to

(3.18) ϕ′′(z) +
ϕ′(z)

z
− sinϕ(z) = 0,

known as Painlevé III in trigonometric form [BE00, Chap. 2]. The preimage of z = 0 is
the set {(u, v) : u = 0 or v = 0}, and hence we see immediately that ϕ(u, v) is a constant
along the axes, and there is an (unbounded) open neighborhood of the axes on which the
PS-front is actually an immersion since ϕ is close to φ0 and away from 0 and π. This is
in stark contrast with Minding’s bobbin where every u-asymptotic curve hits the cuspidal
singular edge at a finite value of the parameter u and likewise for v-asymptotic curves.

For an Amsler sector, along the asymptotic curves given by u = 0, we have κu = ∂uφ = 0
by (3.10), and it follows from Eq. (3.3) that ∂uru = 0 showing that this curve is geodesic
in R3. A similar argument applies to the asymptotic curve given by v = 0.

3.2. Assembling a pseudospherical surface with branch points. As a first illustra-
tion of the procedure to construct C1,1 pseudospherical immersion we construct a monkey
saddle with constant negative curvature, K = −1. Fix an even integer 2m ≥ 4. The
number 2m determines the number of asymptotic rays extending from the origin and the
resulting topological structure of the asymptotic coordinate system.

Definition 3.6 (m-star). Given angles αi ∈ (0, π), i ∈ {1 . . . 2m} satisfying
∑

i αi = 2π
and lengths li > 0, i = 1, 2, . . . , 2m, set β0 = 0, βi = βi−1 + αi for i = 1, 2, . . . 2m, and
define the unit vectors si = cos(βi)e1 + sin(βi)e2. Define the sectors Si ⊂ R2 by

Si = {c si−1 + d si |0 ≤ c < li−1, 0 ≤ d < li}, i = 1, 2, . . . , 2m.(3.19)

An m-star T is a topological space with the set T = T ({αi}, {li}) =
⋃2m
i=1 Si constructed

as above and equipped with the subspace topology given by the inclusion T ⊂ R2.

We define coordinates (ξi, ηi) so that x = ξisi+ηisi+1 for ηi ≥ 0 and x = ξisi−ηisi−1 for
ηi < 0. This gives a bi-Lipschitz mapping (ξi, ηi) : (0, li) × (−li−1, li+1) → (Si−1

⋃
Si)

0 ⊂
R2, that is, in general, not smooth on any open set that intersects {ηi = 0}.
Remark 3.7. In order for all the coordinates (ξi, ηi) to be smooth, we need si+1 = −si−1

for all i, and this forces m = 2, α1 + α2 = π, α1 = α3, α2 = α4.

The coordinate patches for (ξi, ηi) and (ξi+1, ηi+1) overlap on the interior of Si, and
the transition functions between the coordinates, given by ηi+1 = −ξi and ξi+1 = ηi, are
Lipschitz (even smooth). On the sector Si, we can compute the coordinate (ξi, ηi) by

(ξi, ηi) =
1

s∗i+1 · si
(s∗i+1 · x,−s∗i · x)

where the “dual” vectors are given by s∗j = e3 × sj . Note that, s∗i+1 · si = sin(βi+1 −
βi) = sin(αi) > 0, and these formulae extend the coordinates ξi, ηi to the closure Si as
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Lipschitz functions. The origin x = 0 is given by (ξi, ηi) = (0, 0). We define the asymptotic
coordinates (ui, vi) by

(3.20) (ui, vi) =

{
(ξi, ηi) if i is even

(ηi, ξi) if i is odd

The quantities (ui, vi) are only defined on the sector Si. Also, for i even (respectively i
odd), 0 ≤ ui = ui+1 < li and vi = vi+1 = 0 (resp. ui = ui+1 = 0 and 0 ≤ vi = vi+1 < li) on
Si ∩ Si+1. We will fix the sector Si in the rest of this argument and henceforth drop the
subscripts i on ui and vi. Given a point z ∈ R3, a direction n ∈ S2 and unit vectors eu and
ev that are pependicular to n, we define the boundary conditions for an Amsler sector by

N(u, 0) = cos(u)n + sin(u)n× eu

N(0, v) = cos(v)n− sin(v)n× ev

r(u, 0) = z + u eu, r(v, 0) = z + v ev(3.21)

It is straightforward to verify that the definitions in (3.21) are solutions of (3.3). It follows
that we can solve the Moutard equation (3.9), a Goursat problem for for the normal N(u, v)
(see [BS08, Thm 1.12] for the details), to obtain smooth solutions in the interior of the
sector Si that extend continuously to the boundary, and on the segment u = 0 (respectively
v = 0), N(0, v) (resp. N(u, 0)) agrees with the definition in (3.21).

We specialize by setting z = 0,n = e3, eu = si, ev = si−1 if i is even and eu = si−1 and
ev = si if i is odd. Note that, for points that are in multiple sectors, i.e. points on the
sector boundaries, either u or v is zero, N and r are defined consistently, i.e. they are same
independent of which sector is taken in the definition. In particular, the point u = v = 0,
which belongs to all sectors, has ri(0, 0) = z = 0, Ni(0, 0) = n = e3 for all i.

In the interior of the sector Si, the normal field Ni which solves the Moutard equa-
tion (3.9) is weakly harmonic and thus determines a PS-front ri : Si → R3 through
the Lelieuvre equations (3.4). Since lim(u,v)→(0,0)Nu × Nv = ±s∗i−1 · si 6= 0, it follows
that there exists ci > 0 such that Nu × Nv does not vanish on the rectangular domain
Ji ≡ {0 < ui < ci, 0 < vi < di} ⊂ Si. ri extends continuously to J̄i and we have con-
structed a PS-front ri ∈ C∞(Ji) ∩ C(J̄i) such that ri(0, 0) = 0 and the normal to the
immersion is given by our choices for N above, i.e. for points in Si

⋂
Sj , N is well defined

since the two potential definitions of the normal, Ni and Nj , agree. We can, after shrink-
ing ci, di if needed, patch these solutions to obtain an m-saddle, i.e. a piecewise smooth
PS-front r : T → R3 where T =

⋃
i Ji is an m-star and r(x) = ri(x) on Ji.

This procedure is illustrated in Fig. 3 with 2m = 6, αk = π/3, k = 1, 2, . . . , 6. Since
the resulting immersion is continuous and piecewise smooth, and has a continuous and
piecewise smooth normal field, it follows that the normal field is (globally) Lipschitz, and
the immersion is C1,1. The immersion restricted to each sector is an example of an Amsler
sector as in Definition 3.5, an object that will play a key role in our constructions below.

Remark 3.8. We will, for the most part, drop the subscript i that indicates the domain of
definition Si, and refer to u and v simply as asymptotic coordinates. This has potential to
cause confusion since u and v are not coordinates in the differential geometric sense and do
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(a) (b) (c)

(d) (e) (f)

Figure 3. Construction of a K = −1 3-saddle (“monkey saddle”) of ge-
odesic radius 1. Each colored sector is smooth, and the gluing procedure
maintains continuity of the normal field, shown by the arrows.

not define a one-to-one map on any open set that intersects a boundary between sectors.
This is mitigated somewhat since we usually work only of a single sector at a time, and on
the intersection Si

⋂
Sj between two sectors, u and v have to agree. Indeed, this condition

along with the requirement that r(u, v) and N(u, v) be well defined on the intersections
of sectors Si

⋂
Sj , independent of whether (u, v) refer to the coordinates on Si or on Sj ,

allows up to patch sectors together to obtain a continuous functions on the m-star
⋃2m
i=1 Si.

We generalize the construction of patching Amsler sectors [GV11] by relaxing the re-
quirements imposed in (3.21).

Definition 3.9. An m-saddle is a C1,1 mapping r : T ({αi}, {li})→ R3 from an m-star to
R3 such that the restriction ri = r|Si is a PS-front, i.e. ri(ui, vi) and the corresponding
normal Ni(ui, vi) are C1M in the coordinates (ui, vi), the normal is weakly regular and is
Lorentz harmonic. m is the order of saddleness at the point ui = vi = 0

We now define an algorithm for constructing m-saddles through assembly.

Proposition 3.10 (Assembly). Let 2m ≥ 4 be an even number and let L < ∞. As-
sume that we are given smooth functions κi : [0, L) → R and angles αi ∈ (0, π), for
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i = 1, 2, . . . , 2m, satisfying
∑2m

i=1 αi = 2π. There exist li ∈ (0, L), i = 1, 2, . . . , 2m, suf-
ficiently small, 2m arc-length parameterized Frenet frames Fi : [0, li) → M3×3 and an
m-saddle r : T ({αi}, {li})→ R3 satisfying

(1) r(0, 0) = 0 and N(0, 0) = e3,
(2) For i even (resp. i odd) Fi satisfies the first (resp. second) equation in (3.3) with

κu = κi (resp. κv = κi) and the initial conditions ru(0) = si (resp. rv(0) = si) and
N(0) = e3,

where βi =
∑i

j=1 αj , si = cos(βi)e1 + sin(βi)e2 and T is an m-star as in Definition 3.6.

Proof. The proof is by explicit construction. The existence and uniqueness for the Frenet
frames follows from standard results for ODEs. The prescribed data therefore determines
the normal field N at the boundaries of the sectors Si where T =

⋃2m
i=1 Si, and we can

solve (3.9) for Ni(u, v) in the interiors of the sectors Si. This normal field is weakly
harmonic on each sector so we can construct the corresponding immersions using the
Lelieuvre formulae. The solutions on the sectors Si can be patched on the intersections
Si∩Si+1 since both patches agree with the curve t 7→ r(tsi), 0 ≤ t < li on this intersection,
and the normals agree as well with the solution for the Frenet frame Fi. On the sector
Si, lim(u,v)→(0,0) ‖Nu×Nv‖ = |s∗i−1 · si| > 0 so there is a m-star containing the origin, given
by {li} sufficiently small, such that patching the sectors gives a piecewise smooth, globally
Lipschitz normal field N and a C1,1 immersion r : T → R3. �

It follows from Definition 3.9 that the order of saddleness mp at any point p is the
number of times any sufficiently small deleted neighborhood of p crosses from one side
of (say “below”) the tangent plane at p to the other side (“above”) [Roz62b]. mp thus
measures the number of ‘undulations’ at p. The mp−2 “excess” undulations, in comparison
with a regular saddle, persist to the boundary. This mechanism allows hyperbolic surfaces
to refine the buckling wavelength, isometrically, near the boundary [GSSV16].

For the point p, that is common to all the sectors Sk in Prop. 3.10, the order of saddleness
mp = m, corresponding to half the number of sectors at p. Since the asymptotic directions
at p are defined by the intersection between the surface and the tangent plane at p (cf.
Dupin Indicatrix [Sto89, §4.12]), this relation, between the number of asymptotic directions
at p and mp holds more generally. This is illustrated in Figs. 4a and 4c. Every point in
Fig. 4a has m = 2. In Fig. 4c, most points have m = 2 but there is one point with m = 3.

3.3. The topology of the normal map and obstructions to smoothing. Our pri-
mary interest in this work is to immerse a geodesic disk Ω ≡ BR ⊂ H2 of radius R and
constant curvature K = −1 into R3 isometrically with essentially bounded principal cur-
vatures. The local structure of this mapping near any point p ∈ Ω will be modeled by our
construction of m-saddles and m-stars. This motivates the following definition.

Definition 3.11. A branched pseudospherical immersion of a subset Ω of the Hyperbolic
plane is a globally C1,1 and piecewise C2 isometric immersion ψ : Ω→ R3 such that every
p ∈ Ω has a neighborhood Op, a homeomorphism τp : Op → Tp, where Tp is a mp-star, and
an associated mp-saddle rp : Tp → R3 such that ψ|Op = rp ◦ τp.
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(a) (b) (c) (d)

Figure 4. The (local) winding number of the normal field about a point
p for two surfaces: (a) A smooth pseudospherical saddle and (c) A C1,1

pseudospherical monkey saddle. (b),(d) Projections of the corresponding
normal fields. p denotes the center of the disks. mp = 2, Jp = −1 for the
saddle and mp = 3, Jp = −2 for the monkey saddle.

In this work, we will consider branched pseudospherical immersions ψ : Ω → R3 where
mp = 2 except for finitely many points p1, p2, . . . , pk ∈ Ω, the branch points of ψ. Note
that our definition of branch points/immersions is local. For global considerations, we will
use notions from the theory of cell complexes, and refer the reader to [Hat02, Chap. 0] and
[KMM04, §2.1] for background material. We begin by stating the definition of a quadraph.

Definition 3.12 (Quadgraph, cf. Def. 2, [HVR14]). A quad-graph is a strongly regular
polytopal cell decomposition of a surface, such that all faces are quadrilaterals (quads).

A cell decomposition of a surface, given by vertices {Vi}, edges {Ej} and faces {Fk}
is strongly regular if (i) The edges and vertices of each face are pairwise distinct, (ii) the
intersection of two faces is either empty, a single vertex, or the closure of an edge. For our
purposes, the quadgraph is required to admit preferred ‘asymptotic coordinates’.

Definition 3.13 (Asymptotic complex). An asymptotic complex A is a quadgraph such
that (i) each face Fk is equipped with a bijection ψk : Fk → Rk where Rk = [0, uk]× [0, vk]
is a rectangle, (ii) The collection of edges is partitioned into a family of u-edges Eu and a
family of v edges Ev such that adjacent edges on every face come from alternating families,
and (iii) if a (closed) u edge Euj = Fk ∩ Fl, then uk = ul and the attaching map is given

by (u, va) ∈ Euj ⊂ Fk 7→ (u, vb) ∈ Fl or (u, va) ∈ Euj ⊂ Fk 7→ (uk − u, vb) ∈ Fl where

va ∈ {0, vk}, vb ∈ {0, vl}. Mutatis mutandis a similar condition holds for the v-edges.

Lemma 3.14. Let A be an asymptotic complex. Then A is checkerboard colorable, i.e. we
can assign labels ‘red’ and ‘black’ to the faces in F such that any pair of neighboring faces
get different labels. Also, every interior vertex (a vertex not in ∂A) has even degree.

Proof. From out definition, there is a globally consistent assignment of the edges, i.e.
elements of X1, to u- and v- edges that alternate going around any vertex. This implies
that every cycle in the dual graph, which crosses equal numbers of u and v edges in X1 is
even, and thus the dual graph is bipartite [ADH98, Chap. 2]. In particular, the complex
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A is checkerboard colorable, and every interior vertex has even degree, since the faces
incident on an interior vertex constitute a cycle in the dual graph, the link of the vertex.
These features are illustrated by the examples in Fig. 5. The two grids are equivalent as
graphs, although the grid in Fig. 5a is naturally interpreted as the quadgraph for the surface
obtained by assembly in §3.2 while the grid in Fig. 5b is perhaps naturally interpreted as
the result of surgery by excising a quadrant and replacing by 3 sectors, as in §3.4 below. �

Remark 3.15. The bijection ψk : Fk → [0, uk] × [0, vk] in Definition 3.13 gives asymptotic
coordinates on the face Fk ⊆ A. We will henceforth assume that A is simply connected and
can be embedded into R2. The second condition actually follows from the first so every
simply connected asymptotic complex is homeomorphic to the disk [HVR14, Rmk. 7].

(a) (b)

Figure 5. Examples of checkerboard-colorable, simply connected asymp-
totic complexes that are embedded in the plane.

Definition 3.16 (Branched PS-front/Asymptotic quadrilateral). A branched PS-front is
a mapping r : A → R3 on an asymptotic complex A such that the restriction rk = r|Fk
is continuous on the face Fk and a C1M PS-front on the interior F 0

k . An asymptotic
quadrilateral is the image r(Fk) of a face in a branched PS-front.

An asymptotic quadrilateral is thus a “rectangular” domain, bounded by 2 pairs of inter-
secting u and v asymptotic curves, on which we can define global asymptotic coordinates.

Definition 3.17 (Sector). Let ψ : Ω → R3 be a branched isometry. A sector (at p) is a
closed set K ⊂ Ω, such that there is a injection τ : K → [0, u0)×[0, v0), τ ∈ C(K)∩C2(K0),
and a PS-front r : (0, u0)× (0, v0)×R3 satisfying ψ|K = r ◦ τ . Further τ(p) = (0, 0) and K
contains the segments γu = τ−1([0, u0)× {0}) and γv = τ−1({0} × [0, v0)).
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Informally, a sector at p is a set bounded on ‘two sides’ by a u- and a v- asymptotic
curve through p, and contains no other asymptotic curves through p. Let p ∈ Ω ⊂ H and
let ψ : Ω → R3 be a branched isometry. The sum of the mp angles of the sectors at p (in
the surface) is 2π. The images of these sectors under the Gauss normal map N , however,
can wind around the normal N(p) multiple times, as depicted in Fig. 4d. This motivates

Definition 3.18. Let V ⊆ Ω be an open set, p ∈ V and U = V \ {p} denote a deleted
neighborhood of p. Let N : Ω→ S2 be a continuous map with the property that N(U) ⊆
S2 \ {±N(p)}, where −N(p) is the antipodal point to N(p). The ramification index of the
normal map at p, denoted by Jp, is defined as the degree of the (composite) map

S1 γ−→ U
N−→ S2 \ {±N(p)} π−→ S1,

where γ is a simple closed curve in U , x⊥ = x−〈N(p), x〉N(p) and π(x) = x⊥/‖x⊥‖ is the
canonical retraction π : S2 \ {±N(p)} → S1 (“retracting to the equator”).

For surfaces with negative extrinsic curvature, Jp < 0 everywhere since the normal winds
clockwise for a counterclockwise circuit around p. If Jp = −1, the normal map is a local
homeomorphism. However, if Jp < −1, then N(V ) is a branched (“multiple-sheeted”)
covering of a neighborhood of N(p), which is therefore a branch point for the inverse of
the Gauss normal map. This justifies calling p a branch point if |Jp| > 1, and is in keeping
with standard usage [Kir01, GV13, GSSV16].

Every immersion can be (locally) expressed as a graph (x1, x2, w(x1, x2)) where (x1, x2)
are coordinates in the tangent plane at p, and w(x1, x2) is the normal displacement from
this plane. In these coordinates, π ◦N = ∇w/‖∇w‖, so we can compute the ramification
index Jp as the degree of the map S1 → S1 given by

{(x1, x2) |x2
1 + x2

2 = 1} 7→ ∇w(εx1, εx2)

‖∇w(εx1, εx2)‖ ,

for any sufficiently small ε. This computation of Jp is illustrated in Fig. 4.
The winding number Jp and the order of saddleness mp are related as follows

Lemma 3.19. Let y : Ω → R3 be a C1,1 pseudospherical immersion, and let p be a point
in Ω. Then Jp = 1−mp where Jp is the local degree of the Gauss normal map N : Ω→ S2

at p, and mp is the order of saddleness of the immersion y at p.

Proof. We remark that the quantities mp and Jp are well defined for C1,1 immersion (and
even for immersions with lower regularity), since N : Ω→ S2 is continuous (even Lipschitz)
[HN59]. The equality Jp = (1 − mp) is known from the theory of weakly regular saddle
surfaces (see [Roz66, Lemma 1.2]). We will have further use for the intuition behind this
result so we give a short, self contained argument that holds for branched C1,1 surfaces.
Our argument is based on the Lelieuvre equations (3.4).

By invariance under Euclidean motions, we can, WLOG, assume that y(p) = 0, N(p) =
e3. A saddle of order m is defined by angles 0 = β0 < β1 < · · · < β2m = 2π such that
the tangent vectors, at p, to the u and v asymptotic curves are given by si = cos(βi)e1 +
sin(βi)e2 (cf. Eq. (3.19)).
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From (3.4), we have, Nu = N × ru, Nv = −N × rv, so the asymptotic curves lift to
S2 by the normal map N into curves whose tangents at N(p) = e3 are given by ti =
cos(θi)e1 + sin(θi)e2 where θi = βi + π

2 mod 2π if i is even and θi = βi − π
2 mod 2π if i is

odd. We can determine the values of θi by imposing the requirement 0 < θi − θi+1 < π,
which is necessary to ensure that Nu ×Nv = −ru × rv. Since 0 < βi+1 − βi < π, it follows
that θi+2 − θi = βi+2 − βi − 2π. Adding up the differences in the θi, we thus get

2m∑
i=1

[θi − θi−1] =
m∑
k=1

[θ2k − θ2k−2] = β2m − β0 − 2mπ = 2(1−m)π,

thus proving the claim that Jp = 1−mp. �

Fig. 4 is an illustration of this result. It seems natural that there is no “nice” way
to approach the monkey saddle (Fig. 4c) through normal saddle surfaces (Fig. 4a), since
we cannot go from a winding number of 1 to a winding number of 2 continuously. This is
indeed the case as we show in Theorem 3.22 below. This theorem encapsulates the principal
motivation for an investigation of pseudospherical surfaces with branch points, namely that
surfaces with branch points are distinct from smooth surfaces psuedospherical surfaces
because they carry a topological index that cannot be smoothed away. Our approach is
based on the ideas of Brezis and Nirenberg for the degree of BMO mappings [BN95, BN96]
with quantitative estimates from the theory of quasi-isometric mappings [Joh68, Joh69].

Definition 3.18 for Jp is through computing the index on a circle with sufficiently small
radius ε. We now show that the radius ε is only limited by the max curvature so that, for
any minimizing sequence for E∞ consisting of C2 immersions, we have uniform control on
the size of the circles that we may use to compute the “local” degree of the normal map.

Lemma 3.20. For all kmax < ∞ there exist η = η(kmax) > 0 such that for all 0 < δ < η
and for all C2 pseudospherical immersion y : B3δ → R3 with max(|κ1(x)|, |κ2(x)|) ≤ kmax

for all x ∈ B2δ, we have

(1) The normal map N : B2δ → S2 is one-to-one.
(2) For all x in the ‘collar’ B2δ \ Bδ, we have ‖N(x) − N0‖ ≥ c(kmax)δ, where N0 is

the image of the center of the geodesic ball B2δ.

Proof. For a C2 immersion y : B3δ → R3, there are global asymptotic coordinates u, v
on B2δ and an angle field ϕ : B2δ → (0, π) such that the metric is given by g = du2 +
2σ cos(ϕ)dudv+dv2 [HW51] (See also (3.8)), and the pull back of the metric on the sphere
by the Normal map gives G = du2 + dv2 − 2σ cos(ϕ)dudv. The larger principal curvature
is given by max(tan ϕ

2 , cot ϕ2 ) so the hypothesis gives the restriction 2 tan−1 1
kmax

≤ ϕ ≤
π − 2 tan−1 1

kmax
. We note here that κ1(x)κ2(x) = −1 so, necessarily, kmax ≥ 1.

For any tangent vector w ∈ span( ∂
∂u ,

∂
∂v ), we have

(3.22) k−2
max ≤

1− | cosϕ|
1 + | cosϕ| ≤

√
G(w,w)

g(w,w)
≤ 1 + | cosϕ|

1− | cosϕ| ≤ k
2
max
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Setting η = π
6k
−1
max, it is straightforward to see that the length of a spherical arc between

N0 and N(x) is less than π
2 . Consequently, N(x) ·N0 > 0 for all x ∈ B3δ and the image of

B3δ under the normal map is contained within a hemisphere.
We can identify B3δ with a subset of the unit disk through the Poincaré disk embedding

[And05, Chap. 4] (see also §4.1). Pre- and post- composing the Normal map N with
complex conjugation and projection ⊥: S2 → R2 into the orthogonal complement of N0,

we obtain the map N
⊥

: B3δ → R2 given by (x+ iy) 7→ N(x− iy)− 〈N(x− iy), N0〉N0.

We collect a few properties of the map N
⊥

:

(1) The image of this map is contained in the unit disk.
(2) This map is C1 since N is C1 and the other maps are smooth.

(3) N
⊥

preserves orientation since complex conjugation and N are both orientation
reversing, while ⊥ preserves orientation.

(4) It follows from the smoothness of complex conjugation, the smoothness of the
Poincaré disk identification of the unit disk x2 + y2 < 1 with the Hyperbolic plane,
the smoothness of the orthogonal projection from the (open) hemisphere to the
unit disk, the compactness of B2δ, and from (3.22) that an analogous relation is

true for the mapping N
⊥

, i.e. the (local) distortion of lengths by the mapping N
⊥

is bounded away from 0 and∞ on the ball B2δ. The constants giving these bounds
only depend on η and the constants in (3.22), so they only depend on kmax.

It follows that N
⊥

: B2δ → R2 is a regular quasi-isometry [Joh68] (i.e. a Bounded
length distortion (BLD) local homeomorphism [MV88, §4]). Our conclusions are a direct
restatement of the results of F. John, [Joh68, Thm. III] (see also [MV88, Lemma 4.3]). �

In the preceding proof, we used the following result, first proved in [Joh68, Thm. III].
We present an equivalent statement using the notation in [MV88].

Definition (BLD mapping, Def. 2.1, Martio and Väisälä [MV88]). Let L > 1. A Lipschitz
mapping f : G ⊆ Rn → Rn is said to be of L-bounded length distortion, abbreviated L-
BLD, if, for a.e. x ∈ G, (i) |h|/L ≤ |f ′(x)h| ≤ L|h| for all h ∈ Rn, and (ii) det(Df(x)) > 0.

Theorem (Thm. III, John [Joh68]). If f : G ⊆ Rn → Rn is an L-BLD immersion and if
Br(x) ⊆ G, then ‖f(w)− f(z)‖/L ≤ ‖w − z‖ ≤ L‖f(w)− f(z)‖ for all w, z ∈ Br/L2(x).

The following lemma weakens the hypotheses in the previous lemma, by (i) allowing for
branched i.e. globally C1,1 and piecewise C2 immersions, and (ii) removing the uniform
bound kmax for the max curvature. The conclusions are also correspondingly weaker.

Lemma 3.21. Let Ω ⊂ H2 denote a (proper) open subset of the Hyperbolic plane and let
y : Ω → R3 be a branched pseudospherical immersion. For every point p ∈ Ω, there exist
δ > 0 and d0 > 0 such that:

(1) The normal map N : B2δ(p)→ S2 satisfies N(x) 6= N(p) for any x in the punctured
ball B2δ(p) \ {p}.

(2) For all x in the ‘collar’ B2δ(p) \Bδ(p), we have ‖N(x)−N(p)‖ ≥ d0.
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Proof. If y is a C2 immersion, the normal map N : Ω→ S2 is an immersion at p and thus
injective in a neighborhood of p, implying the existence of an appropriate δ > 0 such that
for all x ∈ B3δ(p) \ {p} we have N(x) 6= N(p). Since B2δ(p) \Bδ(p) is a compact subset of
B3δ(p) \ {p} and N is continuous, the conclusions follow.

If y is a branched immersion, the normal map is not injective on any neighborhood of
a branch point p since p is a ramification point for the Gauss Normal map N : Ω → S2.
However, if Si ⊂ Ω is one sector at the branch point p, we can extend the asymptotic
curves bounding Si smoothly so that the extensions satisfy Eq. (3.3). As in Prop. 3.10,
we can now construct a C2 immersion ỹi on a neighborhood of p, one that agrees with y
on the sector Si. Thus there is a δi > 0 such that N(x) 6= N(p) on Si

⋂
B3δi(p). Setting

δ = min(δ0, δ1, . . . , δ2mp−1) gives a δ > 0 with the required property. �

Theorem 3.22. Let Ω denote an open, simply connected, domain in the Hyperbolic plane
and y : Ω→ R3 be a C1,1 immersion, possibly with branch points. Assume that there exists
a sequence of C2 pseudospherical immersions yn : Ω→ R3 such that

(1) yn → y in W 2,2
loc .

(2) E∞[yn] ≤ kmax for all n.

Then mp[y] = 2 for every point in Ω.

Proof. p ∈ Ω is an arbitrary point. In what follows, let ε > 0 be sufficiently small so that
B3ε(p) ⊆ Ω and ε < min(η(kmax), δ(p)) for η(kmax) as given by Lemma 3.20, and δ(p), as
given by Lemma 3.21. Also, there is a corresponding ρ0(p) = min(c(kmax)ε, d0(p)) > 0, such

that x ∈ B2ε(p) \Bε(p) implies that ‖N(x)−N(p)‖ ≥ ρ0(p) and ‖Nn(x)−Nn(p)‖ ≥ ρ0(p)
for all n, where N and Nn are the normal maps for the immersions y and yn respectively.
ε > 0 now gives uniform control on the size of the geodesic ball Bε(p) whose boundary

can be used to compute the local winding number Jn(p) and the limiting winding number
Jp, as in Definition 3.18, at (a potential branch point) p.

For the C2 immersions yn, Nn is locally one to one [HN59] and J
(n)
p , the local degree of

the normal map Nn at Nn(p) is −1 (from the reversal of orientation). W 2,2
loc convergence

yn → y implies W 1,2 convergence of the Normal maps on compact sets (here B2ε(p)).

Convergence of the normals in W 1,2(B2ε(p)) implies convergence in BMO [Eva98, §5.8.1]

as well as in L1(B2ε(p)). Our maps Nn thus satisfy the hypotheses required for the stability
of degree under BMO convergence [BN96, Property 2, §II.2]. This implies Jp = −1 for the
immersion y. Lemma 3.19 now implies that mp = 2. �

According to Thm. 3.22, the monkey saddle in Fig. 4c, which has a point p with Jp = −2,

cannot be approximated, in W 2,2
loc , by sequences of C2 pseudospherical immersions with

uniformly bounded principal curvatures E∞(yn) ≤ kmax < ∞. This is a local statement,
so the relevant issue is not that the principal curvatures are getting large away from the
branch point p. Indeed, since W 2,∞

loc convergence implies W 2,2
loc convergence, it follows that

any sequence of smooth pseudospherical immersions that converges to the monkey saddle in
W 2,2

loc necessarily has blowup of the principal curvatures on arbitrarily small neighborhoods

of the branch point p and therefore does not converge in W 2,∞
loc . In physical terms, the
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index mp (or equivalently Jp) makes branch points topological defects, and they cannot be
“smoothed out” while keeping the principal curvatures uniformly bounded.

Theorem 3.22 allows/suggests the possibility that the infimum of max curvature E∞ for
C1,1 branched isometries can be strictly smaller than the infimum over C2 or smoother
isometries, since we cannot approximate isometries with a nonempty set of branch points
{pi | J(pi) ≥ 2}, in W 2,2

loc , or a fortiori in W 2,∞
loc , by smooth isometries with locally uniformly

bounded curvatures. Such an energy gap between these two regularity classes is certainly
unexpected, since branched isometries can indeed be approximated by smooth mappings.
Also, this behavior is in striking contrast to the case of flat [Pak04, Hor11] and elliptic
surfaces [HV18], where W 2,2 isometries (respectively C1,1 isometries) can be approximated

in W 2,2
loc (resp. W 2,∞

loc ) by smooth isometries.
We present numerical evidence to support the existence of an energy gap for surfaces

with constant negative curvature (see Fig. 17a), and argue that rather than being merely
a mathematical curiosity, this energy gap is key to explaining the observed ubiquity of
undulating morphologies for hyperbolic sheets in nature, despite the existence of smoother
isometries [GSSV16]. The existence of an energy gap for the max curvature and Willmore
functionals restricted to isometries is an example of the Lavrentiev phenomenon [Lav26,
BM85], [Ces83, §18.5], and this has important consequences for numerically minimization
of energy functionals [BK87]. We discuss these issues further in §6.

Remark 3.23. Thm. 3.22 does not imply that y, a W 2,2
loc limit of C2 pseudospherical im-

mersions is necessarily C2, although the local degree of y is −1 everywhere. Indeed, the
construction from Eq. 3.19 with m = 2 (4 sectors) but with α1 + α2 6= π and α2 + α3 6= π
gives a piecewise smooth, non-C2 surface in any neighborhood of p since the u and the v
asymptotic curves through p (respectively γu and γv) are not differentiable at p. However,
γu and γv can be uniformly approximated by smooth solutions of Eq. (3.3) obtained by
smoothing the (distributional) geodesic curvature(s) κu (respectively κv) of γu (resp. γv)
giving a pair of intersecting “initial curves”. Solving the Lelieuvre equations yields smooth
pseudospherical surfaces that converge to a C1,1 immersion with J = −1 everywhere. This
argument also gives approximations by smooth isometries for the C1M pseudospherical
surfaces investigated by Dorfmeister and Sterling [DS16], which have J = −1 everywhere,
in contrast to the branched pseudospherical surfaces considered in this work.

3.4. Introducing a new branch point: Surgery. Here we outline another specific
example of a branched surface, illustrating an approach that we call surgery, in contrast
to the approach of assembly in the earlier section. In the process of surgery, we introduce
a branch point into a “pre-existing” PS-front.

Lemma 3.24 (Surgery). Let Ω0 = [0, umax] × [0, vmax] and let r0 : Ω0 → R3 be a C1M

PS-front. Given (u∗, v∗) in the interior of Ω0 and ũ, ṽ > 0, let Ω∗ = [0, umax]× [0, vmax] \
[u∗, umax]×[v∗, vmax],Ω1 = [0, umax−u∗]×[0, ṽ],Ω2 = [0, ũ]×[0, ṽ],Ω3 = [0, ũ]×[0, vmax−v∗].
There exist PS-fronts ri : Ωi → R3 and attaching maps χj such that we can glue together
Ω∗ with Ωi, i = 1, 2, 3 and the PS-front r0|Ω∗ with the PS-fronts ri, i = 1, 2, 3 to obtain a
branched PS-front with a branch point at (u∗, v∗) ∈ Ω∗.
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Figure 6. Surgery for asymptotic coordinate patches in Ω. (a) Ω, (b) Ω∗,
and (c) Ω∗

⋃
Ω1. The normal field along the u-line in Ω1 is obtained by

copying the corresponding data from the immersion of Ω∗.

Proof. We set z1 = r0(u∗, v∗),n1 = N0(u∗, v∗), tu = ∂ur0(u∗, v∗) and tv = ∂vr0(u∗, v∗). We
define the asymptotic complex A using the attaching maps

χ1 : (u, 0) ∈ Ω1 7→ (u∗ + u, v∗) ∈ Ω∗, χ2 : (u, 0) ∈ Ω3 7→ (u, 0) ∈ Ω2

χ3 : (0, v) ∈ Ω3 7→ (u∗, v∗ + v) ∈ Ω∗, χ4 : (0, v) ∈ Ω1 7→ (0, v) ∈ Ω3(3.23)

We construct PS-fronts r1, r2 and r3 on the rectangles Ω1 = [0, umax − u∗]× [0, ṽ],Ω2 =
[0, ũ]× [0, ṽ] and Ω3 = [0, ũ]× [0, vmax− v∗] respectively which are then assembled with the
PS-front r0 on Ω∗ as in §3.2. The procedure for gluing the patches is outlined in Fig. 6,
and the corresponding gluing procedure for the immersions, ri is illustrated in Fig. 7.

We will take r2 to be an Amsler patch on Ω2 with boundary conditions given by (3.21)
with data inherited from r0 by attaching at (u∗, v∗). Specifically, we set

(3.24) z = z1, n = n1, e(1)
u =

2tv + tu
‖2tv + tu‖

, e(1)
v =

2tu + tv
‖2tu + tv‖

,

as an approximation to trisecting the angle between the asymptotic curves at the branch
point. Solving (3.9) and (3.4) gives N2 and the corresponding PS-front r2.

To build the Gauss map, N1 : Ω1 → S2, again, we need only prescribe normal data along
the axes: u ≥ 0 and v ≥ 0, where the coordinates (u, v) are now “local” to Ω1. We get
data along v = 0 by copying it from the normal field N0 using the attaching map χ1:

(3.25) N1(u, 0) = N0(χ1(u, 0)) for u ∈ [0, umax − u∗],
The data for N1 along u = 0 comes from the PS-front r2:

(3.26) N1(0, v) = N2(χ4(0, v)) = cos(v)n1 − sin(v)n1 × e(1)
v for v ∈ [0, ṽ], .

We can now obtain a weakly harmonic normal field N1 by solving the Moutard equa-
tion (3.9) on the rectangle Ω1 and then integrating the Lelieuvre equations to obtain the
PS-front r1. A similar procedure yields N3 and r3.
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(a) (b)

(c) (d) (e)

Figure 7. Introducing a branch point into a smooth pseudospherical sur-
face away from the origin. The resulting sectors have curved edges.

By construction N0 = N1 ◦ χ1 ⇒ r0 = r1 ◦ χi on Ω∗ ∩ Ω1, and similar relations hold
on all the edges where asymptotic quadrilaterals intersect. We can therefore assemble the
PS-fronts r0, r1, r2 and r3 to obtain a branched PS-front ψ : A→ R3 that agrees with r0 on
Ω∗, and on a subdomain such where Nu ×Nv does not vanish, to obtain a C1,1 isometric
immersion with K = −1. The topological structure of the asymptotic lines corresponds
to a monkey saddle (2m = 6) at the branch point (u∗, v∗) – there are six asymptotic rays
extending from the branch point. �

It is clear how we can repeat this procedure recursively by picking branch point, cutting
out one sector from this branch point, and replacing it with 3 new sectors. We call this
procedure surgery to contrast it with the procedure in §3.2, which we refer to as assembly.
Surfaces with a second generation of branch points are shown in Figure 8.
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(a) (b)

Figure 8. Recursively performing surgery on an initially smooth surface.

3.5. The Sine-Gordon equation for surfaces with branch points. Let f : Ω → R3

be a smooth pseudospherical immersion, so that the asymptotic curves and the angle
function ϕ(u, v) are differentiable. We can define a one form α = 1

2(ϕvdv − ϕudu) and an

area 2-from β =
√

det(gij) du ∧ dv where g = du2 + 2σ cosϕdudv + dv2 and the sign of
the square root is picked so that the orientation induced by β agrees with the orientation
induced by ω or equivalently, by Nω (See Eq. (3.8)). It is now straightforward to check
that β = σ sinϕdu ∧ dv. On a domain where σ does not change sign, the sine-Gordon
equation (3.10) is equivalent to dα − β = 0. Integrating over an asymptotic quadrilateral
R = {u0 ≤ u ≤ u1, v0 ≤ v ≤ v1} we obtain the Hazzidakis formula

(3.27) ∆Rϕ ≡ ϕ(u0, v0)− ϕ(u0, v1) + ϕ(u1, v1)− ϕ(u1, v0) = A(R)

where ∆Rϕ =
∑

(−1)`iϕi, i indexes the vertices in the quadrilateral, `i is the modulo 2
length of any path from the vertex (u0, v0) to the vertex labelled i, and A is the area of
(the immersion of) the quadrilateral. In order that R be immersed into R3, we must have
0 < ϕ(u, v) < π on R, which gives A(R) < 2π for any immersed asymptotic quadrilateral.
The Hazzidakis formula (3.27) holds even in circumstances where ϕ is not differentiable.
For C1M PS-fronts ϕ only needs to be C0 but this formula still holds and the sine-Gordon
equation can be interpreted in a distributional sense [DS16].

Definition 3.25 (Hamburger polygons). A Hamburger polygon γ is a piecewise C1 Jordan
curve that bounds a domain, γ = ∂Γ, and consists of arcs that are either u or v asymptotic
curves [Ham24],[Wei96, §3.3].

Eq. (3.27) naturally extends to Hamburger polygons contained in domains where the
immersion r is C2. Integrating the sine-Gordon equation dα− β = 0 on Γ, we get

(3.28) ∆Γϕ ≡
∑
i

(−1)`iϕi =

∮
γ
α =

∫
Γ
β = A(Γ),
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where i indexes the vertices in the Hamburger polygon and `i is 0 mod 2 at every initial
vertex for an arc from the u-family (also a terminal vertex for a v-arc) and `i = 1 mod 2
at every terminal vertex of a u-arc (resp. initial vertex of a v-arc), with respect to the
orientation on γ that is induced by ω.

Asymptotic quadrilaterals (Definition 3.16) and m-stars (Definition 3.6) are bounded
by asymptotic curves, so they are examples of Hamburger polygons. However, Eq. 3.28 is
only guaranteed to apply to C2 asymptotic quadrilaterals, agreeing with the Hazzidakis
formula (3.27). Every m-star with m > 2 contains a branch point, where the immersion is
not smooth, so further work is needed to deduce the analog of Eq. 3.28 for m-stars, or more
generally for C1,1 branched pseudospherical surfaces. For C1M surfaces, with a continuous
ϕ, we see that ∆Γ ≡ ∆(Γ)→ 0 as A(Γ)→ 0, so there is no concentration for the quantity
∆Γ =

∮
∂Γ α on sets of vanishing area.

For branched surfaces, ϕ is not always continuous and ϕ necessarily has jumps across
the asymptotic curves that are incident on a branch point. This might potentially result
in concentration of ∆ on these “singular” objects. We can determine the potential con-
centrations of ∆ on branch points, and along the asymptotic curves that are incident on
branch points, by using appropriate Hamburger polygons as illustrated in Fig. 9.

(a) (b)

Figure 9. (a) The Hamburger polygon Tε allows us to compute the concen-
tration of ∆ at the central branch points and the rectangle Rε = [q−ε r

−
ε r

+
ε q

+
ε ]

determines the concentration on an asymptotic curve incident on the branch
point. (b) Blowing up the polygon Tε. The angle ϕ is nearly constant on
each sector. ϕ = α2i on the even sectors and ϕ = π − α2i+1 on the odd
sectors, where αj is the angle between the asymptotic curves bounding the

jthsector.

Lemma 3.26 (Concentration at branch points). Let Ti be an m-star that is obtained from
2mi asymptotic quadrilaterals incident on a point pi. Then ∆Ti = A(Ti)− (mi − 2)π.
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Proof. From Definition 3.6 of an m-star, we see that ∂Ti is a 2mi sided Hamburger polygon,
as shown in Fig. 9a. For the ε-thin “rectangle” Rε shown in Fig. 9a, we have ∆Rε =
ϕ(r+

ε )−ϕ(r−ε ) +ϕ(q−ε )−ϕ(q+
ε ). Let us first assume that this rectangle straddles a u-curve

incident on pi. In this case, we can estimate ϕ(r+
ε )−ϕ(q+

ε ) =
∫
∂uϕ

+du+O(ε) noting that
the integral is taken entirely inside a sector at pi, so there are no discontinuities along the
integration path. Similarly, ϕ(r−ε )−ϕ(q−ε ) =

∫
∂uϕ

−du+O(ε). Although ϕ+ and ϕ−, the
limits of the angle ϕ in approaching the boundary S+ ∩ S− from either side are different,
their derivatives ∂uϕ

± = −κu have to match, since they are both equal to the geodesic
curvature of a u-curve that is common to both sectors (See Eq. (3.10)). Consequently,
∆Rε = O(ε). A similar argument also applies to v-curves incident on pi. Thus, there is no
concentration of ∆ along the asymptotic curves that are incident on branch points.

We now consider the concentration of ∆ on the branch point pi with order of saddleness
mi enclosed by a ε-small, mi-star Tε, comprising of asymptotic rhombi R0, R1, . . . , R2mp−1

as shown in Figure 9a. As discussed in Prop. 3.10, the local structure is given by alternat-
ing sets of mi u-curves and mi v-curves that are incident at p with well defined tangent
directions. Let αj , j = 0, 1, 2, . . . , 2mp − 1 denote the angle of the rhombus Rj at pi with
respect to the orientation ω induced by the normal N(pi). This is consistent with the def-

initions in §3.2. Clearly
∑2mi−1

j=0 αj = 2π. From Eq. (3.7), we see that the angles between
the asymptotic directions at pi are given by comparing the sense of the rotation from ru
to rv, chosen to be directed away from p, with the orientation induced by ω:

(3.29) ϕj =

{
αj if ru to rv is counter-clockwise

π − αj otherwise

On each rhombus Rj , the surface restricts to a C2 (even smooth) PS-front, so it follows
that ϕ is continuous. In particular, at the vertex qj , diagonally across from p in Rj , we
have ϕ(qj) = ϕj +O(ε). We can now compute,

(3.30) ∆Tε =
∑
j

(−1)iϕj +O(ε) = −(mp − 2)π +O(ε)

Combining these results, with the contributions of the quadrilaterals that comprise the
complement of the ε-thin rectangles and the ε-small mi-star Tε, that are given by the
Hazzidakis formula (3.27), we get ∆Ti = A(Ti)− (mi − 2)π. �

Note that the same argument also applies at points p with mp = 2. This lemma shows
that branch points do indeed concentrate ∆. This concentration, equal to −(mp − 2)π at
a point p, has a definite sign, and is zero at points where the surface is locally a 2-saddle,
as we would expect. It is straightforward to “globalize” the arguments from above to get
a generalization of the (integrated form) of the sine-Gordon equation that is valid even for
C1,1 branched pseudospherical immersions. We record this in the following theorem:

Theorem 3.27. Let r : (Ω, g)→ R3 be a branched pseudospherical immersion, with finitely
many isolated branch points pi, i = 1, 2, . . . , k. Let Γ ⊂ Ω be a domain with compact closure
in Ω whose boundary γ = ∂Γ is a Hamburger polygon with vertices q0, q1, . . . , q2j−1 and q0
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is an initial vertex for a u-arc with respect to an orientation ω on Ω. Then, we have

(3.31) ∆Γ ≡
2j−1∑
n=0

(−1)nϕ(qn) = A(Γ)−
∑
pi∈Γ

(mi − 2)π

where ϕ, the angle between the asymptotic curves, is defined by σ = sign(ω(∂ur, ∂vr)), ϕ ∈
(0, π), sinϕ = ‖∂ur × ∂vr‖, cosϕ = σ∂ur · ∂vr.
Proof. The domain Γ decomposes into a union of finitely many m-stars, each enclosing a
branch point, and a collection of finitely many asymptotic quadrilaterals. Therefore Γ =⋃N
j=1 ΓJ where each Γj is a Hamburger polygon. Since ω will induce opposite orientations

on a edge that is in Γj
⋂

Γj′ with j 6= j′, it is easy to see that ∆Γ =
∑M

j=1 ∆Γj . The

theorem now follows from the additivity of the area A, the Hazzidakis formula (3.27) and
the ‘concentration at branch points’ lemma 3.26. �

Remark 3.28. The principal curvatures of a pseudospherical immersion are given by κ1 =
tan ϕ

2 , κ2 = − cot ϕ2 so κ1κ2 = −1. The Willmore energy is given by a density κ2
1 + κ2

2, and

the W 2,∞ energy is given by supx∈Ω max(|κ1(x)|, |κ2(x)|). In either case, optimizing the
energy demands that we keep ϕ ≈ π

2 everywhere.
If ϕ were identically equal to π

2 , the left hand side of (3.31) is zero since there are
equal number of positive and negative contributions from (−1)nϕ(qn). The right hand
side, however, is a difference between two positive quantities, the continuously varying
quantity A(Γ) and a discrete quantity

∑
pi∈Γ(mi − 2)π. It is therefore impossible to have

ϕ ≡ π
2 everywhere. This underscores the need to distribute branch points on Ω so there is

“quasi-local” cancellation between the area form and the branch point contributions, i.e.
energy optimal branched pseudospherical immersions will arise from attempting to place,
on average, 1 branch point with m = 3 in every Hamburger polygon Γ with area A(Γ) = π.
Each such branch point adds an extra undulation to the surface, that persists from the
branch point out to the boundary.

4. Discrete differential geometry for branched pseudospherical surfaces

Our goal is to construct discrete analogs of the geometric notions in §3. As in Prop. 3.10,
branched surfaces are realized by patching asymptotic rectangles, with the combinatorics
given by the underlying asymptotic complex. Following this approach, we will build discrete
PS-fronts by appropriate gluing of discrete K-surfaces (see Definition 4.1 below.)

Asymptotic rectangles are discretized by rectangular subsets of εZ2 for sufficiently small
ε > 0. Indeed, there is a natural inclusion λk : Mk := {0, ε, 2ε, . . . , ikε} × {ε, 2ε, . . . , jkε} ⊂
εZ2 → Fk given by inverting the bijection ψk : Fk → [0, uk] × [0, vk] (See Definition 3.13.
WLOG we can assume uk, vk are multiples of ε using small perturbations if necessary). The
sets {(iε, j0ε)| 0 ≤ i ≤ ik} and {(i0ε, jε)| 0 ≤ j ≤ jk} are the ‘discrete’ u and v asymptotic
curves.

Rectangular subsets of εZ2 have a natural quadgraph structure given by the faces [iε, (i+
1)ε] × [jε, (j + 1)ε] and the natural attaching maps induced by inclusion into R2. This
structure, along with the attaching maps defining the asymptotic complex A, inherited
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through the mappings λk : Mk → Fk, define a quadgraph Qε, which will be the setting for
our numerical constructions of (discrete) branched PS-fronts and pseudospherical surfaces.

As with the ‘continuous’ construction in §3, we will first construct a discrete Lorentz-
harmonic normal field N ε : Qε → S2, and then determine the corresponding discrete
immersion rε : Qε → R3 using an appropriate discretization of the Lelieuvre equations (3.4).

Within each face of the asymptotic complex, generating a PS-front reduces to solving
(3.9). As we discussed above the discretization of a face uses square grids, i.e. subsets
of Z2, so we denote an arbitrary node by (i, j). We use the following notation, which
is standard in DDG [BS08, Chap. 2], to denote the discretization of a function f on an
elementary quad:

fi,j = f0, fi+1,j = f1, fi,j+1 = f2, and fi+1,j+1 = f12.(4.1)

Definition 4.1. [Discrete K-surface] A map r : J ⊆ Z2 → R3 is called a discrete K-surface
if and only if there exists a discrete map N : J → S2 such that, on every quad,

(4.2) r1 = r0 +N1 ×N0, r2 = r0 −N2 ×N0,

Eqs. (4.2) are the discrete Lelieuvre equations (cf. Eq. (3.4)) and go back to the work
of Sauer [Sau50] and Wunderlich [Wun51]. The discrete Lelieuvre equations are natural
discretizations of the Lelieuvre (differential) equations (3.4). They guarantee that ri±1,j −
ri,j and ri,j±1 − ri,j are orthogonal to Ni,j , i.e. the vertex stars are planar for any solution
of (4.2).

Definition 4.1 only requires us to distinguish u-edges (corresponding to r1 − r0) and
v-edges (giving r2 − r0) and therefore generalize naturally to discrete K-surfaces defined
on Asymptotic complexes, through the requirement that (4.2) hold on each quad with the
following labeling of vertices: Give one of the 4 vertices the index 0. Label the neighbor of
0 along a u-edge by 1 and the neighbor along a v-edge by 2. Finally label the diagonally
opposite vertex 12. On each quad we have two possible definitions of r12, either from the
path 0→ 1→ 12 or the path 0→ 2→ 12. Compatibility requires that

(4.3) N1 ×N0 −N12 ×N1 − (−N2 ×N0 +N12 ×N2) = (N1 +N2)× (N0 +N12) = 0

Directly discretizing the (continuous) compatibility condition Eq. (3.5), yields

Nuv ×N = 0 7→ 0 = (N12 +N0 − (N1 +N2))× (N0 +N1 +N2 +N12)

4

=
2

4
(N0 ×N1 −N1 ×N12 +N12 ×N2 −N2 ×N0)

=
1

2
(N0 +N12)× (N1 +N2)(4.4)

This is the same as equation (4.3). This discretization therefore has the remarkable prop-
erty that the discretization of the (continuous) compatibility condition for the Lelieuvre
formulae is exactly the same as the discrete compatibility of the discrete Lelieuvre formulae,
rather than, as one might plausibly imagine, a numerical approximation that recovers the
exact result in the limit the discretization size h goes to zero. This particular discretiza-
tion exemplifies a key idea in discrete differential geometry (DDG). Rather than serving
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merely as numerical discretizations of the “true” (continuous) differential geometry, DDG
is a complete theory in its own right [BS08, p. xiv].

We now give short, self-contained proofs of standard results from DDG for K-surfaces
r : Z2 → R3 (See the text [BS08] for further details). We first exhibit solutions for the
discrete Goursat problem of specifying N(i, 0) and N(0, j) and solving for N(i, j), on a
single quad. On an elementary quad, assume that N12 is unknown, while values for N0, N1

and N2 are known. Then (4.4) requires

N12 = ν(N1 +N2)−N0,

for some ν ∈ R, as is the case for a Moutard net [BS08, §2.3]. The condition that N12 is a
unit vector gives a quadratic equation for ν:

〈N12, N12〉 = ν2〈N1 +N2, N1 +N2〉 − 2ν〈N1 +N2, N0〉+ 〈N0, N0〉
= ν2‖N1 +N2‖2 − 2ν〈N1 +N2, N0〉+ 1,

which reduces to

0 = ν
(
ν‖N1 +N2‖2 − 2〈N1 +N2, N0〉

)
.

This implies that ν = 0 and N12 = −N0 or ν = 2 〈N1+N2,N0〉
〈N1+N2,N1+N2〉 and

(4.5) N12 =

[
(N1 +N2)(N1 +N2)T

〈N1 +N2, N1 +N2〉
− I
]
N0.

The former being the antipodal point, and the latter being the desired solution. This is
the Householder reflection of N0 through the plane generated by N1 and N2. Though we
solved for N12 = Ni+1,j+1 above, this approach can be used to solve for the fourth normal
vector provided the normal at the three other corners is given (See Figure 10a).

Lemma 4.2. If ‖N0−N1‖ = ‖N0−N2‖, and N12 is determined by Householder reflection
as in (4.5), it follows that N0N1N12N2 is a spherical rhombus.

Proof. Since the angle δ between N0 and N1 is the same as the angle between N0 and N2,
〈N0, N1〉 = 〈N0, N2〉 = cos δ and we have

0 = 〈N12 −N0, N12 +N0〉 = ν(〈N12, N1 +N2〉 − 2 cos δ)

0 = ν〈N1 +N2, N1 −N2〉 = ν〈N12, N1 −N2〉
=⇒ cos δ = 〈N12, N1〉 = 〈N12, N2〉,(4.6)

proving that N0N1N12N2 is a spherical rhombus �

Recursively applying (4.5) we can solve for the normal field on an asymptotic quadri-
lateral if it is specified on two of its boundaries, as illustrated in Fig. 10b. In addition,
this procedure also determines the normal field on the other two boundaries. Since the u
and v asymptotic curves have constant torsions (See (3.3)) we can discretize these bound-
aries so that 〈Ni,0, Ni+1,0〉 = 〈N0,j , N0,j+1〉 = cos δ. By (4.6), we get 〈Ni,j , Ni+1,j〉 =
〈Ni,j , Ni,j+1〉 = cos δ and ‖ri+1,j − ri,j‖ = ‖ri,j+1 − ri,j‖ = sin δ for all i, j, so the discrete
surface rij is a discrete Chebyshev net in R3 and the corresponding normal field Nij is
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a discrete Chebyshev net in S2 as illustrated in Fig. 10a. For our purposes, we need to
generalize the ideas from above to consider mappings r : Q→ R3 and N : Q→ S2, where
Q is a general asymptotic complex, and not restricted to be a subset of Z2. This motivates

(a) (b)

Figure 10. (a) A single quadrilateral in the induced Chebyshev net on S2.
Given the normal vectors at three vertices, the normal at the fourth vertex
is determined. (b) The Goursat-type discretized problem on the asymptotic
quadrilateral, Ω. The nodes filled with grey represent provided boundary
data, and open nodes are iteratively solved for via the system (4.4)

Definition 4.3 (Spherical Chebyshev net). A spherical Chebyshev net is a branched em-
bedding N : Q→ S2 of an asymptotic complex Q ⊂ R2 into the sphere that (i) maps every
quad onto a spherical rhombus, (ii) reverses orientation, and (iii) satisfies

(4.7)

{∑
p∈Fk αk = 2π(1−mp) p in the interior has degree 2mp,∑
p∈Fk αk ∈ ((1− dp)π,min((3− dp)π, 0)) p on the boundary has degree dp,

where the sums are over all the faces Fk incident on p, and αk is the (negative) angle at p
for the image N(Fk).

Condition (4.7) enforces the hypothesis in Lemma 3.19 at interior vertices, and allows
for “closing” an edge (respectively corner) vertex with dp odd (resp. even), i.e. making it
an interior vertex by adding 2 (resp. 3) sectors with angles in (−π, 0).

Lemma 4.4. Let Qε be an Asymptotic complex (a simply connected, checkerboard col-
orable quadgraph). For any spherical Chebyshev net N : Qε → S2, the discrete Lelieuvre
equations (4.2) are compatible, and generate generalized K-surface(s) r : Qε → R3.

Proof. We have, 〈N0 − N12, N0 + N1 + N2 + N12〉 = |N0|2 − |N12|2 + 〈N0, N1 + N2〉 −
〈N12, N1 + N2〉 = 0 so N0 + N12 and N1 + N2 are both perpendicular to N0 − N12. A
similar calculation shows that N0 +N12 and N1 +N2 are also perpendicular to N1 −N2.

Finally, 〈N0−N12, N1−N2〉 = cos δ−cos δ−cos δ+cos δ = 0 so N1−N2 and N0−N12 are
not parallel since neither is zero. This implies that N0 +N12 and N1 +N2 are parallel and
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thus satisfy the compatibility condition (4.3). We can therefore “integrate” the discrete
Lelieuvre equations along any path in Qε, starting from a designated ‘origin’ o. Since Qε

is simply connected, we can find a path from o to every other vertex, and summing (4.2)
over the path gives a consistent definition of r : Qε → R3. This gives a 3 parameter family
of generalized K-surfaces determined by the initial (arbitrary) choice of r(o) ∈ R3.

In general, this mapping can be ramified [Wis72], but imposing condition (4.7) ensures
that r is not multi-sheeted, in contrast to N . In particular this condition forces

∑
αk =

2πJp = 2π(1−mp) at all interior vertices, giving consistency with Lemma 3.19. �

The problem of constructing discrete PS-fronts therefore reduces to the problem of con-
structing spherical Chebyshev nets on Asymptotic complexes. To adapt the assembly and
surgery procedures defined for continuous surfaces to the discrete setting we define

Definition 4.5 (A corner vertex). A vertex q in an asymptotic complex Qε is a corner
vertex if a u-edge as well as a v-edge incident on q are contained in the boundary ∂Qε.

Definition 4.6 (Boundary segments). A boundary segment is a curve γ = E1 ∪ E2 · · · ∪
Em ⊂ ∂Qε, where the edges overlap, Ei ∩ Ei+1 6= ∅, and are all either u or v edges.

Lemma 4.7. A boundary segment γ is incident on a corner vertex q ∈ Qε if and only if
q ∈ ∂γ. Conversely, every corner vertex q determines two maximal boundary segments, γu
consisting of u-edges and γv consisting of v-edges.

Proof. Since Qε is simply connected and embeddable in R2, (see Remark 3.15) it follows
that ∂Qε is a Jordan curve consisting of u and v segments. Definition 4.5 implies that q
is on one u and one v edge contained in the boundary, a Jordan curve, so q is not on any
other edge contained in the boundary. The lemma immediately follows. �

Lemma 4.8 (Discrete assembly). Let 2m ≥ 4 be even and γi, i = 1, 2, . . . 2m be mappings
γi : {0, 1, . . . , li} → S2 such that (i) γi(0) = (0, 0, 1) for all i, (ii) αi = ∠γi−1(1)γ(0)γi(1) ∈
(−π, 0) and

∑2m
i=1 αi = 2π(1 − m) (here γ0 = γ2m), and (iii) 〈γi(k), γi(k + 1)〉 = cos δ

for all admissible i, k. This data uniquely determines a maximal asymptotic complex Q, a
spherical Chebyshev net N : Q→ S2 and an unramified K-surface r : Q→ R3.

Proof. Let Ji = {0, 1, . . . , li−1}×{0, 1, . . . , li}, i = 1, 2, . . . , 2m be 2m rectangular domains.
We will set l0 = l2m, J0 = J2m. Defining the attaching maps χi : (k, 0) ∈ Ji 7→ (li−1, k) ∈
Ji−1, we obtain a (discrete) asymptotic complex Q. On each of the sets Ji, we define
Ni(k, 0) = γi−1(k), Ni(0, l) = γi(l) and extend Ni to the rectangle Ji using (4.5). By
construction, the definitions agree along the overlaps, so we can use the attaching maps
to obtain a spherical Chebyshev net N : Q → S2. Taking the edges γi with i even as the
u-edges and i odd as the v edges, we can consistently extended the definition of u and v
edges on every rectangle Ji. The result now follows from Lemma 4.4. �

Lemma 4.9 (Discrete surgery). Let Q be an asymptotic complex and N : Q → S2 be a
spherical Chebyshev net (in particular, all vertices satisfy (4.7)). Given l1, l2 ∈ N and q, a
corner vertex for Q we can define an asymptotic complex Q′ ⊃ Q by attaching 3 rectangular
domains Ji, i = 1, 2, 3 to Q and extending the spherical Chebyshev net N to N ′ : Q′ → S2

such that q /∈ ∂Q′ and the associated K-surface is unramified, i.e. single-sheeted.
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Proof. We set γ0 = γu and γ3 = γv where γu and γv are the boundary u and v boundary
segments incident on q whose existence is given by Lemma 4.7. q satisfies (4.7) and this
defines δ ∈ (0, 3π). Since q is a corner vertex, dp ≥ 2 is even. Let α = −π + δ/3 ∈ (−π, 0).
Determine γ1(1) by ∠γ0(1)N(q)γ1(1) = α and γ2(1) by ∠γ1(1)N(q)γ2(1) = α. Now we

set γi(k) = N(q) cos(kδ) + γi(1)−cos δN(q)
sin δ sin(kδ), k = 1, 2, . . . , li corresponding to equally

spaced points on geodesics on the sphere. An argument identical to the proof of Lemma 4.8
gives the desired result.

Note that, by adding three spherical sectors with angle α at the boundary point q, we
ensure that (4.7) is satisfied at q, and of course, we have not introduced further branch
points, or modified the solution at existing branch points away from q. �

Remark 4.10. We henceforth consider the discrete mappings N : Qε → S2, r : Qε → R3

as our objects of interest. It is also possible to treat them as discrete approximations of
the continuous mappings considered in §3. With finitely many, isolated, branch points
the passage to the continuous limit upon refinement of the quadmesh Qε follows from
a straightforward application of standard arguments that are outlined in [BS08, §5.5],
applied to one asymptotic rectangle at a time. As a “fully discrete” alternative we can also
build approximations to the branched surface using hyperboloid surface patches since our
quadmeshes are checkerboard colorable [HVR14].

4.1. DDG on the Poincaré Disk. Thus far, we have constructed branched pseudospher-
ical surfaces as K-surfaces, i.e. mappings r : Qε → R3 from asymptotic coordinates into
R3. However, the primary object of interest in elasticity is the deformation y : Ω → R3,
the mapping from the Lagrangian (material) domain Ω to the Eulerian (lab) frame R3.
To construct this mapping, we need also to compute the transformation ζ : Qε → Ω that
allows us to identify the material location corresponding to a point with given asymptotic
coordinates so that y = r ◦ ζ−1. To this end, we start with a coordinatization of Ω.

Since our interest is in pseudospherical surfaces, we have Ω ⊂ H2, and we can identify

H2 with the Poincaré disk (D, g) given by D = {z | |z| < 1}, the unit disk, and g =
4dzdz̄

1− |z|2
[And05, Chap. 4]. z is our Lagrangian or reference coordinate, since it labels material
points independently of their particular locations in R3, i.e. independent of the deformation
y : Ω→ R3. We record a few standard facts about the Poincaré disk model for H2:

(A) The distance between two points z1, z2 ∈ D is given by

dH2(z1, z2) = arccosh

(
1 + 2

|z1 − z2|2
(1− |z1|2)(1− |z2|2)

)
,

In particular, if one of the points is the origin, this expression reduces to

(4.8) dH2(0, z) = 2 arctanh(|z|).
(B) The orientation preserving isometries of H2 are given by (a subgroup of) the Möbius

transformations

(4.9) f(z; z0, θ) = eiθ
z + z0

1 + zz̄0
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where |z0| < 1, θ ∈ [0, 2π). For our purposes, it suffices to take θ = 0 and we shall
henceforth drop this variable and use f(z; z0) = z+z0

1+zz̄0
. It is straightforward to check

that f ′(0; z0) = 1− |z0|2 is real and positive, and f−1(w; z0) = f(w;−z0) = w−z0
1−wz̄0 .

(C) Equally spaced points on the geodesics through z = 0, are given by γβ(n) = eiβ tanh
(
n∆
2

)
,

where ∆ is the separation between successive points on the geodesic. Likewise,
geodesics through a point z0 are given by zn = f(γβ(n); z0).

As we argued above, constructing the appropriate DDG forK = −1 surfaces is equivalent
to constructing discrete Chebyshev nets, i.e. rhombic quadrilaterals in the appropriate
space. Constructing such rhombi on S2, as in (4.5), gives us DDG for the Gauss Normal
map. As we now show, the same idea also applies to the problem of finding the (discrete)
mapping ζ : Qε → Ω ⊂ H2. Given ζ0, ζ1 and ζ2 with dH2(ζ0, ζ1) = dH2(ζ0, ζ2) = 2 tanh

(
∆
2

)
,

we can apply the isometry f(.,−ζ0) to these points and obtain

wj = f(ζj ,−ζ0), w0 = 0, w1 =
∆

2
eiβ1 , w2 =

∆

2
eiβ2 .

The fourth vertex w12 of the “normalized” rhombus diagonally across from the vertex w0 at
the origin, can be determine by a straightforward computation after setting dH2(w12, w1) =
dH2(w12, w2) = 2 tanh

(
∆
2

)
. ζ12 is then obtained by applying the inverse mapping f(., ζ0).

Putting everything together, we have

wj = f(ζj ,−ζ0) i = 0, 1, 2

w12 =
w1 + w2

1 + |w1w2|
,

ζ12 = f(w12, ζ0)(4.10)

It is now straightforward to construct (branched) Chebyshev nets in H2 that inherit their
topology from a given asymptotic complex. More formally, a discrete hyperbolic Chebyshev
net is a quadgraph in H2 with an assignment of u and v labels to the edges such that each
face (quad) has two u and two v edges which alternate, and satisfying (4.10) on each quad,
where ζ0 and ζ12 are one set of non-adjacent vertices, and ζ1, ζ2 are the vertices on the other
diagonal. A branch point is any interior vertex with degree 2m ≥ 6. From the Chebyshev
net in H2, we can immediately construct the corresponding K-surface (discretized surface)
in R3 by requiring that each star (the edges incident on a vertex rj,k) be planar with lengths
and angles given by the Chebyshev net at the vertex ζj,k, i.e. the mapping between the
Poincaré disk and R3 is a discrete conformal map at each vertex. This mapping between
the Poincaré disk and R3 is the desired Lagrangian to Eulerian map. Although differing
in details, the idea of conformally mapping the Hyperbolic plane into R3 has been used
to investigate the wavy edges of leaves [NP17, NV01], and for energetic and geometric
approaches to studying buckling in hyperbolic elastic surfaces [NP15].

As an illustration of our approach, we construct a discrete hyperbolic Chebyshev net
corresponding to an Amsler surface with an angle ϕ = π/2 between the straight asymptotic
lines where they intersect. Since these asymptotic lines are also geodesics in R3, the same
is true for the corresponding curves in the Poincaré disk. We pick the origin z = 0 to
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Figure 11. Examples of a piece of an Amsler surface represented in (a)
asymptotic coordinates (u, v) and (b) in the Poincaré disk z, up to the
singular edge, colored by the angle φ and contoured by geodesic radius with
labels.

correspond to this point of intersection. If the rhombi have a side-length ∆ it follows that

the ‘Amsler-type’ boundary data on the Poincaré disk are given by ζj,0 = tanh
(
j∆
2

)
, ζ0,k =

i tanh
(
k∆
2

)
. We then solve for ζj,k with j 6= 0, k 6= 0 using (4.10). The (discretized) angle

between the asymptotic lines at node j, k is given by

(4.11) ϕj,k = arg(w2w
∗
1),

where the wj are determined by (4.10) with ζ0 = ζj,k, ζ1 = ζ(j+1),k, ζ2 = ζj,(k+1).
The results are displayed in Figure 11. Fig. 11a shows the hyperbolic Chebyshev net

ζj,k where each node is colored by the angle ϕj,k up to the contour ϕ = π corresponding
to the singular edge. The dashed curves are the boundaries of geodesic disks, labelled by
radius. It is clear that the Amsler surface with angle π/2 allows us to smoothly embed a
geodesic disks of radius 1 into R3 but not a disk of radius 1.5 [GV11]. Fig. 11b displays the
same information in terms of the discrete indices j, k which are proxies for the asymptotic
coordinates u and v. Since the geodesic distance to the origin is easily computed in the
Poincaré disk by (4.8), we have an efficient method to determine geodesic radii on pseudo-
spherical surfaces without explictly integrating the arclength [GV11] or solving an eikonal
equation on the surface. Fig. 12 shows the corresponding K-surface in R3, a discretization
of the Amsler surface with angle π

2 between the generators. Multiple singular edges are
discernible by their characteristic cuspidal form (cf. Fig. 2).

The last notion we need to introduce is that of a reversal. We know that, in general, a
pseudospherical parametrization r(u, v) does not correspond to an immersed surface, and
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Figure 12. The Amsler surface with ϕ0 = π
2 .

the failure of (local) injectivity is associated with the locus where ∂ur × ∂vr = 0. The
notion of reversal captures this idea in a discrete setting. Let ω be an orientation on H2.
If ζj,k is a regular point, it is incident on 4 quads given by ζj+p,k+q, where p, q ∈ {−1, 0, 1}.
We say that there is a reversal at ζj,k if

(4.12)
∏

p∈{−1,1},q∈{−1,1}

ω(f(ζj+p,k,−ζj,k), f(ζj,k+q,−ζj,k)) ≤ 0.

This condition is invariant under Möbius transformations and also under reversal of the
orientation ω → −ω being a product of 4 terms. The import of this condition is that, at
a reversal one of the quads that is incident on ζj,k is flipped relative to the other three,
so the Chebyshev net is folding over itself. The Amsler surface in Fig. 12 corresponds to
three reversals of the associated hyperbolic Chebyshev net.

Fig. 13a shows the discrete hyperbolic Chebyshev net for the Amsler surface with angle
π/2 ‘extended’ beyond the singular edge, where the Chebyshev net ζj,k appears to fold
back upon itself, as expected. This is evident in Figure 13a. The rhombi in the Chebyshev
net are colored with an opacity of eighty percent. As a result, overlapping “sheets” of
the immersion appear significantly darker. Since our procedure gives a (discrete) isometry
from the hyperbolic Chebyshev net to the corresponding K-surface in R3, a reversal in
the hyperbolic Chebyshev net indicates that δuζ ≡ ζj+1,k − ζj,k and δvζ ≡ ζj,k+1 − ζj,k
have passed through collinearity. This corresponds to the angle ϕ between the asymptotic
curves becoming 0 or π, indicating the occurrence of a singular edge.

In Fig. 14 we show the steps for the particular example of starting with an Amsler surface
with angle π/2 and building a (branched) immersion to R = 3, a radius beyond the initial
singular edge. To stave off the singular edge we first pick a threshold angle φ∗ < π. For
the illustration in Fig. 14 we take φ∗ = 3π/4. We then excise the region u ≥ u∗, v ≥ v∗,
where u∗, v∗ are determined by the intersection of the geodesic circle with radius R = 3
with the contour ϕ(u, v) = φ∗. Note that, at this point ϕ(u∗, v∗) < φ∗ < π and R < 0.5,
so the cut is significantly inside the singular edge of the initial Amsler surface.

We now perform surgery to replace the removed sector by 3 new sectors. This needs the
introduction of two more asymptotic curves, indicated in Fig. 14c, along which we are free
to prescribe data. We prescribe this data in the Poincaré disk by picking equally spaced
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Figure 13. Introduction of branch points into the Poincaré disk via the
surgical process. In (a) we see a smooth immersion, the singular edge in-
hibiting the ability to immerse a large portion of H2; (b) a cropped version
and finally (c) the glued C1,1 Poincaré disk. Overlapping “sheets” of the im-
mersion appear significantly darker and provide a signature for the singular
edge.

point on the two geodesics through the point ζ0 = ζ(u∗, v∗) obtained by trisecting the angle
left behind by the sector that is removed. In more detail, if w1 and w2 are the “edges” of
the excised sector, moved to the origin by a Möbius transformation (See (4.10)), we define

(4.13) ϕ1 = arg(w2w
2
1)/3, ϕ2 = arg(w2

2w1)/3.

Then, the appropriate geodesics are given by undoing the Möbius transformation,

(4.14) ζ0,k = f

(
eiϕ1 tanh

(
k∆

2

)
, ζ0

)
, ζj,0 = f

(
eiϕ2 tanh

(
j∆

2

)
, ζ0

)
,

where ∆ is the side-length of the rhombi in the Chebyshev net. We can determine ζj,k in
the interiors of the three new sectors using (4.10). We can do this in each of the 4 sectors
(quadrants) that constitute the initial Amsler surface and the resulting Chebyshev net in
the Poincare disk is illustrated in Fig. 13c. The result is a discrete Chebyshev net with 4
vertices of degree 6, one in each quadrant, corresponding to the branch points. We thus
have implemented surgery, as introduced in §3.4, directly in the Poincaré disk.

Remark 4.11 (Ramification). Unlike for DDG based on spherical Chebyshev nets (4.2),
where we need condition (4.7) to guarantee that the resulting K-surface is unramified,
DDG based on (4.10) gives a discrete conformal map between the net in the Poincare disk
and the resulting K-surface, so any hyperbolic Chebyshev net where the angles add up to
2π at interior nodes, and to less than 2π at boundary nodes will give a K-surface with
no ramification (cf. Wissler [Wis72]). In particular, our algorithm 4.1 guarantees this. Of
course, the normal map is ramified at branch points.
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(d) Filling the cut and n→ n+ 1.

Figure 14. Illustration of Algorithm 4.1. Desired R = 3. (a) The ini-
tial asymptotic curves on which we prescribe Amsler data (equally spaced
points on geodesics) (b) Filling in the discrete hyperbolic Chebyshev net and
identifying the first cut location (u∗, v∗). (c) Introducing new asymptotic
curves from the branch point on which we again prescribe Amsler data. (d)
General sector having non-constant ϕ (non-Amsler data) along the v-axis.
In (b),(d), the figures are colored by the value of ϕ with black-dashed con-
tours representing geodesic radius, increments of 0.5. The solid green lines
represent the edges of the L-cut, and their intersection the location of the
branch point, (u∗, v∗).
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Fig. 14d shows one of the resulting sectors in the 2nd generation, i.e. the asymptotic
curves defining the boundaries of the sector are incident on the branch point (u∗, v∗) from
the first cut. Note that the singular edge again intersects the geodesic circle R = 3 so we
have to repeat the entire procedure to obtain the 2nd generation branch points and 3rd

generation sectors. Note also that the new branch point is at R ≈ 1.5 and thus the first
and second generations sectors, taken together, are closer to covering the desired domain
R ≤ 3, and do so while maintaining ϕ ≤ φ∗ everywhere.

This surgery procedure can be repeated recursively to construct branched isometric im-
mersions of arbitrarily large disks. We list the steps involved in Algorithm 4.1. This is a
‘greedy’ algorithm for constructing branched immersions since it is based on picking the
cut locations using information local to a particular sector, and attempts to maximize the
size of the sector in the current generation, rather than pick the cut location in a more glob-
ally optimal fashion. By construction, the algorithm generates distributed branch points
in a recursive and self-similar manner, We discuss this further in §5.1, where we estimate
the number of recursion steps needed before the algorithm terminates when applied to a
Pseudospherical disk with (geodesic) radius R. Fig. 15 illustrates the final step in Algo-
rithm 4.1, showing discrete surfaces constructed from mapping the rhombi in hyperbolic
Chebyshev nets to skew rhombi in R3.

Figure 15. The process of constructing a discrete isometric immersion
recursively by surgery. These figures illustrate the generation an K-surface
in R3 from a discrete Chebyshev net in the Poincaré disk.

We will present a full analysis of Alg. 4.1 elsewhere. We note that every branch point pi
has a non-empty open neighborhood, the interior of Ωn

⋃
Ωi+1

⋃
Ωi+2

⋃
Ωi+3, given by the

parent sector pn and the 3 sectors at pi. Compactness of the closed geodesic disk implies
we only have finitely many branch points if we can show that the sectors cover the disk.

We can do this, and more, by exploiting a “dual” view point of the algorithm starting
from the alternative, “non-recursive”, construction for isometric immersions of disks into
R3. This immersion is achieved through patching sufficiently narrow Amsler sectors, whose
singular edges are further away from the origin than the radiusR, meeting at a single branch
point of sufficiently high index at the origin [GV11, GV13] (See also §3.2 and Fig. 3). The
comparison between the two methods is shown in Fig. 16. The figures show the discrete
Chebyshev net in H2 corresponding to the recursive and single branch point isometries of
disks of radii 2, 3 and 4 respectively. The quads in the Chebyshev nets are colored by the
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Algorithm 4.1 A greedy algorithm for building large branched surfaces recursively.

1: Parameters: R ← radius of disk to be embedded, M ← 2m ≥ 4 number of initial
sectors, φ∗ ∈ (π/m, π)← cutoff angle, ∆← discretization size, N ← d2R/∆e.

2: Initialize: List of Sectors = {Ω1,Ω2, . . . ,ΩM}, Each sector Ωn = ∅.
3: for n ∈ {1, 2, . . . ,M} do

4: ζnj,0 ← eiπ(n−1)/m tanh
(
j∆
2

)
, ζn0,k ← eiπn/m tanh

(
k∆
2

)
for j, k = 0, 1, 2, . . . , N .

5: Determine ζnj,k recursively for 1 ≤ j, k ≤ n from (4.10).
6: Discard ζnj,k if both ζnj−1,k and ζnj,k−1 are outside the geodesic disk of radius R.

7: Ωn ← {ζnj,k all j, k ≤ N not discarded}.
8: Determine ϕnj,k using (4.11) at nodes where ζnj+1,k and ζnj,k+1 are in Ωn.
9: end for

10: repeat
11: Identify a sector Ωn containing points with ϕnj,k > φ∗.

12: j∗ ← max{j |ϕ`,k ≤ φ∗ ∀ ζ`,k ∈ Ωn, ` ≤ j}.
13: k∗ ← max{k |ϕj,` ≤ φ∗ ∀ ζj,` ∈ Ωn, ` ≤ k}.
14: Ωn ← Ωn \ {ζnj,k | j > j∗, k > k∗}.
15: Sectors← Sectors

⋃{ΩM+1,ΩM+2,ΩM+3}.
16: ζM+2

j,0 , ζM+2
0,k , 0 ≤ j, k ≤ N are determined using (4.13) and (4.14).

17: ζM+1
j,0 ← ζnj+j∗,k∗ , ζM+1

0,k ← ζM+2
0,k , ζM+3

0,k ← ζnj∗,k+k∗ , ζM+3
j,0 ← ζM+2

j,0 .

18: for p ∈ {1, 2, 3} do

19: Determine ζM+p
j,k recursively using (4.10).

20: Discard ζM+p
j,k if both ζM+p

j−1,k and ζM+p
j,k−1 are outside the geodesic disk of radius R.

21: ΩM+p ← {ζM+p
j,k all j, k ≤ N not discarded}.

22: Determine ϕM+p
j,k using (4.11) at nodes where ζM+p

j+1,k and ζM+p
j,k+1 are in ΩM+p.

23: end for
24: M ←M + 3.
25: until no sector contains points with ϕj,k > φ∗.
26: Q← quadgraph given by the hyperbolic Chebyshev net

⋃
n ζ

n
j,k.

27: Construct an K-surface r : Q→ R3 using the side-lengths and angles given by
⋃
n ζ

n
j,k.

κmax, the larger principal curvature. The figures suggest that the energies of both types of
embeddings grow with R, the radius of the disk, but the energy of recursive embeddings
grows slowly compared to the energy of single branch point ‘periodic-Amsler’ embeddings.

For the single branch point at the origin, the order of saddleness can be estimated
m0 ∼ CeR for an O(1) constant C. Algorithm 4.1 has a dual interpretation as follows:

(1) Start with a single branch point at the origin with m′ = 3gm where m is as defined
in the algorithm and g is determined by 3g−1m < m0 ≤ 3gm. g is the expected
number of ‘generations’ of branch points (see also ‘cut depth’ in §5.1).
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Figure 16. A comparison of isometric immersions of H2 via recursively
constructed branched surfaces (left) and by a single branch point at the
origin with a large index (right) as represented in the Poincaré disk. The
figures show immersions with geodesic radii R = 2, 3 and 4 represented
by the dashed line. The surfaces are colored by the max of the absolute
principal curvatures: darker representing higher energy.

(2) In the first step, retain a branch point with index m at the origin and move 2m
daughter branch points, each with degree 3g outward in their respective sectors,
until the maximum angle ϕ over points in (each of) the “growing” sectors at 0
equals the cutoff angle φ∗. More precisely, this is equivalent to finding the locations
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j∗, k∗ in each of the 2m initial sectors (Steps 12 and 13 in the algorithm) and this
determines the locations of the branch points of the first generation.

(3) Recursively, at the k-th stage, move 2 · 3k−1 ·m daughter branch points, each with
degree 3g−k, outward until the max angle ϕ in the sectors at the branch points in
the (k − 1)th generation equals φ∗.

(4) At every stage, the union of the sectors cover the entire disk.
(5) This process is ‘monotonic’, for φ∗ ≤ π/2, because we have the following comparison

principle. Let J = [0, u0] × [0, v0]. Let ϕi, i = 1, 2 denote solutions of the sine-
Gordon equation ∂uvϕi(u, v) = sinϕi(u, v) satisfying 0 < ϕi(u, v) < π/2 on J . If
φ1(u, 0) ≤ φ2(u, 0) for 0 ≤ u ≤ u0 and φ1(0, v) ≤ φ2(0, v) for 0 ≤ v ≤ v0 then it
follows that φ1 ≤ φ2 on J .

(6) This monotonicity implies that, for m ≥ 6, φ∗ ≤ π/2, the result of the greedy
algorithm is obtained by starting with the appropriate periodic Amsler surface on
the disk of radius R and moving branch points outwards, a process that increases ϕ.
We can discard a branch point and all of its sectors if it ever reaches the boundary of
the disk, and no new branch points ever enter the disk. Formalizing this argument
proves that Algorithm 4.1 terminates, and further, obtains an apriori bound on the
number of sectors M ≤ 2 · 3g · m < 6m0 and the minimum angle ϕ ≥ 3−g πm so

E∞ < C3gm < C ′eR for some constant C ′.

Numerically, we find that Algorithm 4.1 terminates, even for φ∗ > π/2.

5. Distributed branch points and curvature energy

We now investigate the energies of the various classes of pseudospherical immersions. The
principal curvatures are determined by the angle ϕ(u, v) between the asymptotic directions
as κ1 = ± tan ϕ

2 , κ2 = ∓ cot ϕ2 . Consequently, the bending energy (both W 2,∞ and W 2,2)

diverge if the singular edge ϕ = 0 or ϕ = π encroaches the domain Ω ⊂ H2. Our goal
therefore is to construct immersions of Ω such that the angle ϕ between the asymptotic
lines satisfies 0 < δ ≤ ϕ ≤ π−δ < π, where δ = δ(Ω) > 0, and gives a quantitative measure
of how “non-singular” we can make an isometric immersion Ω ⊂ H2 → R3. δ is related to
the max curvature energy by E∞ = cot(δ).

Earlier analyses suggest that the energy optimal C2 pseudospherical immersions of a
geodesic disks are given by subsets of the universal cover of Minding’s bobbin [GV11] (See
also Example 3.4, Eq. (3.11)) giving

(5.1) log inf
r∈C2

E∞[r] ∼ R

where by a ∼ b, we are conjecturing the existence of a constant 1 < C < ∞ such that
C−1b ≤ a ≤ Cb for all R. Alternative low energy immersions of disks are in the form
of C1,1 periodic Amsler surfaces [GV11, GV13] which introduce a single branch point at
the origin. Even with the introduction of this branch point, there are still “large” sets, in
particular, disks with radius R/2 which are free of branch points and where the immersion
is smooth (or can be approximated by smooth isometries as discussed in Remark 3.23), so
Eq. (5.1) implies that, even for these periodic Amsler surfaces, log E∞ ∼ R.
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Figure 17. (a) The E∞ energy for three types of immersions: Minding’s
bobbins (C2-catenoid, thick-dashed), C1,1 periodic-Amsler surfaces (solid)
and C1,1 branched surfaces (dashed-diamond). (b) The maximum recursion
depth n as a function of the geodesic radius R. (c) A numerically generated
‘hyperbolic crochet’ obtained using Alg. 4.1 on a disk of radius R = 3.

Our construction (Algorithm 4.1) introduces distributed branch points, which appear
“as needed”. In this case, as we argue below, we stave off the singular edge and obtain

(5.2) log inf
r∈C1,1

E∞[r] ∼
√
R
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achieving an improvement in the scaling of the logarithm of elastic (bending) energy. The
separation between the energy scales of the smooth and branched isometries is therefore
enormous for large R. The number of generations of branch points, which we also call the
cut depth, grows linearly with R.

While we do not have rigorous proofs for these claims yet, we give arguments that il-
lustrate the intuition behind these relations in §5.1. We also have numerical evidence for
the energy and cut depth scaling obtained from Algorithm 4.1 applied to disks of radius
up to 10. Figure 17a shows the analytically derived energy scaling for Minding’s bobbin,
conjectured as the minimizer of the elastic energy over the class of all C2 isometric immer-
sions, as in (5.1). Periodic-Amsler surfaces exhibit a similar exp(R) scaling, though with
an improved constant [GV11]. The energetic benefits of introducing distributed branch

points is clear, with an apparent energy scaling exp(c
√
R). The cut depth scales linearly

with R as shown in Figure 17b. Fig. 17c shows an immersed pseudospherical surfaces with
distributed branch points, a mathematical ‘hyperbolic crochet’ with R = 3.

5.1. Recursion on Amsler type surfaces. We have implemented Algorithm 4.1 on
disks of radii R ≤ 10 and for various choices of the initial angle φ0 and the cutoff angle
φ∗. Fig. 18a shows the branch points in a disk of radius 4 with φ0 = π

2 , φ
∗ = 3π

4 . The solid
lines indicate the parent-daughter relations among the branch points. The branch points
form a tree since every branch point has a unique parent. We observe that every branch
point (other than the origin) has 3 or fewer daughters, and the leaves of the tree are at
different depths. The ‘Amsler nodes’ along the diagonal are (typically) farther apart than
the ‘pseudo-Amsler’ off-diagonal nodes.

A schematic of the recursion procedure is illustrated in Fig. 18b. The origin u = v = 0
corresponds to a branch point in the nth generation. Let ϕ = ϕ(u, v) denote the angle
between the asymptotic directions on the corresponding sector and we define φn = ϕ(0, 0).
An input to the recursion process is the given threshold φ∗ < π. If the locus of points
where ϕ(u, v) = φ∗ (denoted by z = z∗ in Fig. 18b) intersects the boundary of the domain
Ω, then we need to introduce an n+ 1th generation branch point. The location (u∗n, v

∗
n) of

this branch point is determined by the requirement that on the L-shaped region [0, umax]×
[0, v∗n]

⋃
[0, u∗n] × [0, vmax] the angle satisfies ϕ(u, v) ≤ φ∗ guaranteeing that this region is

bounded away from the singular edge.
The angle φn+1 for the next generation is given by φn+1 = 1

3ϕ(u∗n, v
∗
n). To analyze

the recursion process and obtain scaling laws for the maximum curvature, we need to
understand the relation between φn and φn+1. Indeed, ϕ is monotone in both u and v as
it satisfies the ϕuv = sinφ > 0. The only mechanism that decreases ϕ is the trisection at
a branch point. Since the principal curvatures are given by ± tan ϕ

2 and ∓ cot ϕ2 , it follows
that

(5.3) E∞ = max
n,k

(
cot

φn,k
2
, tan

φ∗

2

)
where φn,k is the angle at the kth branch point in the nth generation.
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(a)

umaxu

v

vmax

(u∗n, v
∗
n)

z = z∗

z = 2
√
u∗nv

∗
n

∂Ω

(b)

Figure 18. (a) The Poincaré disk representation of 4 generations of dis-
tributed branch points in a disk of radius R = 4. (b) Annotated illustration
of an L-shaped cut in going from the nth to the n+ 1th generation. .

If the asymptotic curves u = 0 and v = 0 bounding a sector are geodesics, i.e. for
Amsler sectors, we can analyze the relation between φn+1 and φn in more detail. In this
case, ϕ(u, v) is a self-similar solution ϕ = ϕ(2

√
uv) given by Eq. (3.18). We then have

Lemma 5.1. Let ϕ be the solution of (3.18) with ϕ(0) = φn > 0 and let umax, vmax, φ
∗ < π

be given. We also identify ϕ(u, v) = ϕ(2
√
uv) as the corresponding solution of the sine-

Gordon equation on the rectangle [0, umax]× [0, vmax]. There exist u∗n, v
∗
n > 0 such that

(1) ϕ(u, v) ≤ φ∗ for all (u, v) ∈ Ω∗ := [0, umax]× [0, v∗n]
⋃

[0, u∗n]× [0, vmax].
(2) ϕ(u∗, v∗) ≥ φnI0 (C(φ∗)ζn) where I0 is the modified Bessel function of the first kind,

0 < C(φ∗) < 1 is a constant that only depends on φ∗, and

ζn =
1

2
√
umaxvmax

(
I−1

0

(
φ∗

φn

))2

.

Proof. We can rewrite (3.18) as the equivalent integral equation

(5.4) ϕ(z) = φn +

∫ z

0

∫ w

0
sin(ϕ(ξ))ξ dξ

dw

w
.

ϕ is therefore monotone increasing on an initial interval [0, z∗] where z∗ is the smallest
solution of ϕ(z) = φ∗. For 0 < φn ≤ ϕ ≤ φ∗, we have the elementary inequalities

(5.5) C2ϕ ≤ sinϕ ≤ ϕ, where C = C(φ∗) =
√

sinφ∗/φ∗ < 1.
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Using these inequalities in conjunction with the integral equation (5.4) and the closed
form solution u = φnI0(Cz) for the linear differential equation ϕ′′ + z−1ϕ′ = C2ϕ,ϕ(0) =
φn, ϕ

′(0) = 0 [AS92, §9.6], we obtain the bounds

(5.6) I0(C(φ∗)z) ≤ ϕ(z)

φn
≤ I0(z)

for all 0 ≤ z ≤ z∗. Setting u∗n = 1
4vmax

(
I−1

0

(
φ∗

φn

))2
, v∗n = 1

4umax

(
I−1

0

(
φ∗

φn

))2
and recog-

nizing that ϕ(u∗n, v
∗
n) ≥ φnI0(2C(φ∗)

√
u∗nv

∗
n) the result follows. �

Remark 5.2. From the preceding lemma, we get the recursion for an Amsler sector

φn+1 ≥
φn
3
I0

(
C(φ∗)

2
√
umaxvmax

(
I−1

0

(
φ∗

φn

))2
)
≥ φn

3
I0

(
C(φ∗)

2R

(
I−1

0

(
φ∗

φn

))2
)
,

where the second inequality obtains from umax ≤ R, vmax ≤ R. We thus get a relation with
explicit dependences on the parameters in the recursion, R and φ∗. Since φn+1/φn ≥ 1
for sufficiently small φn, it is also easy to see that, there is a constant C ′(φ∗), independent

of R, such that φmin := φ∗/I0(C ′(φ∗)
√
R) has the property that φn ≥ φmin for all n if

φ0 ≥ φmin. Note also that we are free to pick a particular value of φ∗ (or even values from
any compact set in (0, π)) and drop all the dependences on φ∗.

The preceding analysis holds for Amsler sectors but most of the sectors generated by
Alg. 4.1 are not Amsler sectors. Rather, they are pseudo-Amsler sectors and only one
boundary is a geodesic. Consequently, we cannot assume that the quantitative relation
from Lemma 5.1 will hold for these psuedo-Amsler sectors as well. The lessons we draw
are qualitative – that the analysis for Amsler sectors helps identify ‘good’ sets of variables
i.e. the appropriate combinations of R,φn, φn+1 that might satisfy ‘universal’ relations.

For a general (not necessarily Amsler) sector we define the quantity

(5.7) α2
n =

1

4sn

(
I−1

0

(
φ∗

φn

))2

,

where sn is the distance from the branch point to the boundary of the domain. The intuition
for this choice is that s2

n ≥ umaxvmax and ζn is like 2α2
n . The argument is Remark 5.2

will apply to all sectors if we can prove an inequality φn+1

φn
≥ f(2Cα2

n) where C > 0 is

independent of R, and f ≥ 1 for sufficiently large values of its argument.
We apply Alg. 4.1 to disks of various sizes and we record αn (as defined in (5.7)) and the

ratio φn+1

φn
, relating the opening angles of the daughter sectors to the angle of the parent

sector, at each cut (u∗, v∗). Fig. 19 shows the scatter plots of φn+1

φn
vs. α2

n for various choices

of R,φ0 and φ∗. On each of these plots, we have also drawn the curves f1(α) = 1
3I0(2α2)

and its supporting quadratic f2(α) =
(
α
α∗

)2
where α∗ =

(
supw≥0

w√
f1(w)

)
. The data

suggest the following observations:
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(1) The plots are essentially the same if there are sufficiently many branch points,
independent of π

6 ≤ φ0 < φ∗ ≤ 4π
5 and R ≥ 6.

(2) The points are clustered in two families. The Amsler nodes satisfy φn+1

φn
≥ 1

3I0(2α2
n)

i.e. the best possible bound from Lemma 5.1, given by C(φ∗) = 1. The pseudo-
Amsler nodes do not satisfy this bound. They seem to satisfy a weaker bound given

by φn+1

φn
≥ max

(
1
3 ,
(

infw>0
I0(2w2)

3w2

)
α2
n

)
= max

(
1
3 ,
(
α
α∗

)2)
.

(a) (b) (c)

Figure 19. Scatter plots of φn+1

φn
vs. α2

n for branched immersions generated

by Alg. 4.1. We plot f1(α) = 1
3I0(2α2) and the supporting quadratic f2(α) ≈

0.73α2. The parameters for the individual plots are: (a) R = 8, φ0 = π
6 , φ

∗ =
4π
5 , (b) R = 8, φ0 = π

2 , φ
∗ = 3π

4 , and (c) R = 10, φ0 = π
4 , φ

∗ = 4π
5 .

Assuming that the inequalities suggested by the numerical results indeed hold for all R,
the same argument as in Remark 5.2 gives a conservative estimate of φmin by setting

(α∗)2 ≡ 1

4R

[
I−1

0

(
φ∗

φmin

)]2

=⇒ φmin =
φ∗

I0(2α∗
√
R)
∼ exp(−α∗

√
2R),

since, from sn < R, we are guaranteed that φn+1/φn ≥ (αn/α
∗)2 ≥ 1 if φn is ever as small

as φmin. Eq. (5.2), our energy bound for isometries with branch points, now follows from
combining φn,k ≥ φmin for all branch points with Eq. (5.3).

From the bound (5.2) for E∞ and the estimate in (5.1) for C2 patches devoid of branch

points, it follows that we cannot have a region of size about
√
R that is free of branch

points. The area of a disk with radius R scales like exp(R) while the “largest” size of

regions free of branch points can only be exp(
√
R). Consequently, we get that the number

of branch points scales like exp(R−
√
R). Since each parent has (at most) 3 daughter branch
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points in Algorithm 4.1, the number of branch points grows (roughly) exponentially with
the number of generations, and it follows that the cut depth scales like

n ∼ max(R−
√
R, 0),

corresponding to a function “nearly” linear function whose slope increases slowly, precisely
as we observe in Fig. 17b.

6. Discussion

Branch points are novel topological defects in C1,1 hyperbolic surfaces that allow signif-
icant shape changes, while they do not concentrate stretching energy. They are unique in
this aspect, since most other defects in condensed matter systems do concentrate energy.

In our view, these are some of the key results from this work –

(1) In definition 3.13 we introduce the notion of an asymptotic complex that encodes
the combinatorics of the asymptotic network and characterizes the nontrivial topol-
ogy induced by the ramification of the corresponding Gauss normal map.

(2) We define a topological index for branch points and prove it is “robust” (Theo-
rem 3.22).

(3) We prove a generalization of the sine-Gordon equation for surfaces with branch
points in Theorem 3.27. This result illustrates why optimizing the bending en-
ergy among isometric immersions of pseudospherical surfaces naturally leads to
distributed branch points (see Remark 3.28).

(4) In §4.1 we introduce a new discrete net for the basic object of interest in elasticity,
the deformation map from the Lagrangian to the Eulerian frame for pseudospherical
surfaces. Our method does encode the asymptotic complex and the topology of
branch points and thereby distinguishes C1,1 immersions from C2 immersions, in
contrast to finite difference/FEM methods which are ‘branch-point agnostic’.

(5) We formulate an algorithm, Alg. 4.1, to generate pseudospherical surfaces with
distributed branch points and (relatively) slower growth in the maximum curvature
with the size of the domain, than for C2 immersions.

(6) We numerically find an energy gap between branched and smooth pseudospherical
surfaces that leads to recursive/self-similar, fractal-like patterns in the distribution
of branch points, and partially answers our motivating question – why do we observe
‘universal’ buckling patterns in hyperbolic surfaces?

We now expand on item 6, which is the central motivating question for this work.
Bounded subsets of smooth hyperbolic manifolds can always be embedded smoothly and
isometrically in R3. There is thus no need for these sheets to stretch, and their morphology
results from a ‘global’ competition between the two principal curvatures [GSSV16] (See also
Example 3.4). This is in contrast to other multi-scale phenomena in thin sheets [Mül17]
which are manifestly driven by a competition between stretching and bending energies
[BAP97, LGL+95, Ven03, BK14a, Olb16] or more generally, energies of different physical
origins [DSV+11, CDD14, BK14b, DSG19, Tob20].
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We argue that branch points arise from the dependence of the max curvature/bending
energy on the regularity class of the immersion y : BR → R3. The results in §3 and
algorithm in §4 are steps towards a quantitative expression of this idea. Our numerical
results and (a non-rigorous) scaling argument suggest, for a disk of radius R and Gauss
curvature K = −1 immersed in R3, the optimal max curvature E∞ = κmax grows as

(6.1) log inf
y:BR→R3

κmax ∼
{
R C2 or smoother isometries,√
R C1,1 branched isometries.

The evidence for this conjecture is presented in Fig. 17a.
If true, conjecture (6.1) would explain why, for sufficiently large disks, isometries with

distributed branch points are preferred. The related argument for cut-depth indicates how
the branch points will be distributed, and “explains” the observed self-similar buckling pat-
terns in thin hyperbolic objects. The energy gap in (6.1) would constitute an entirely new
class of examples of the Lavrentiev phenomenon in nonlinear elasticity [FHM03, BM85].
The Lavrentiev phenomenon is known to be an obstacle for numerical minimization of the
energy functional since discrete approximations often converge to a smooth pseudomini-
mizer rather than the true singular minimizer [BK87]. It is thus of considerable interest
to investigate the convergence properties of our DDG based methods, that discretize C1,1

isometries, and compare the results with existing FEM and finite difference methods for
shells and plates.

Appendix A. Asymptotics of Painlevé III

We can get more accurate estimates than implied by the bounds in (5.6). For ϕ � 1,
the Painlevé III equation (3.18), and the associated boundary conditions, reduce to

ϕ′′(z) +
ϕ′(z)

z
− ϕ(z) = 0, ϕ(0) = ϕ0, ϕ′(0) = 0.

The solution is given by ϕ(z) = ϕ0I0(z), where I0 is the modified Bessel function of the
first kind [AS92, §9.6]. From the small and large z asymptotics of I0 [AS92, §9.7], we get

ϕinner(z) = ϕ0

(
1 +

z2

4
+O

(
z4
))

, for z � 1,

ϕouter(z) = ϕ0
ez√
2πz

(
1 +

1

8z
+O

(
1

z2

))
, forz � 1.

For the regime z � 1, ϕ ≈ π, we have the weakly damped pendulum equation:

ϕ′′(z)− sinϕ(z) = −ϕ
′(z)

z
≈ 0,(A.1)

with asymptotic solutions of the form

(A.2) ϕpend(z) ≈ π −A sin(z∗ − z),
for a slowly-varying amplitude A that changes over many cycles of the pendulum. We are
only interested in the first crossing φ(z∗) = π, so we can assume that A is constant and
determine A by matching the large z asymptotics of the Bessel solution with the pendulum
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solution. From the Bessel solution, we derive initial data for the pendulum equation, fixing
the energy level for this conservative system:

(A.3) (ϕpend(0), ϕ′pend(0)) ≈
(
ϕ0e

z

√
2πz

,
ϕ0e

z

√
2πz

)
= (δ, δ),

where we match at such a point z that z � 1, δ � 1. The energy of the pendulum solution
is given by

(A.4) E =
ϕ′2

2
+ cosϕ ≈ 1 +

δ4

24
,

as cosϕ is the potential and δ � 1. Substituting the data into the energy we find

1 +
δ4

24
≈ 1

2

(
A′ sin(z∗ − z) +A cos(z∗ − z)

)2
+ cosϕ,

≈ 1

2

(
A′ sin(z∗ − z) +A cos(z∗ − z)

)2 − 1 +
(π − ϕ)2

2
,

≈ 1

2

(
A′ sin(z∗ − z) +A cos(z∗ − z)

)2 − 1 +
1

2
A2 sin2(z∗ − z),

≈ −1
1

2

[
A′2 sin2(z∗ − z)− 2A′A sin(z∗ − z) cos(z∗ − z) +A2

]
.

Which in the case of slowing varying A simplifies to

A ≈ 2

√
1 +

δ4

48
.

We are now equipped with a complete asymptotic description of the solutions to Painlevé
III for an initial angle ϕ0. The description is divided into three regimes: z � 1 and
ϕ0 . ϕ� π, z � 1 and ϕ0 � ϕ . π, and finally z � 1 and ϕ ≈ π:

ϕ(z) ≈


ϕ0

(
1 + z2

4

)
, z � 1 and ϕ0 . ϕ� π

ϕ0
ez√
2πz

(
1 + 1

8z

)
, z � 1 and ϕ0 � ϕ . π

π − 2
√

1 + e4z

192π2z2
sin(z∗ − z), ϕ ≈ π, z . z∗ ≈ − log(ϕ0)

(A.5)

A numerical validation of these asymptotic relations is illustrated in Fig. 20 (we consider
ϕ0 = π

100). Using the expressions in (A.5) instead of the bounds (5.6) gives the optimal
constant C(φ∗) = 1 in Lemma 5.1.

Acknowledgments

We are grateful to Amit Acharya, Andrew Sageman-Furnas, David Glickenstein, Eran
Sharon, John Gemmer and Kenneth Yamamoto for many stimulating discussions. SV
gratefully acknowledges the hospitality of the Center for Nonlinear Analysis at Carnegie
Mellon University, the Oxford Center for Industrial and Applied Math at Oxford University
and the Hausdorff Institute at the University of Bonn where portions of this work were
carried out. TS was partially supported by a Michael Tabor fellowship from the Graduate



BRANCH POINTS IN ELASTIC PSEUDOSPHERICAL SURFACES 54

0.0 2.5 5.0 7.5 10.0
z

0

1

2

3

4

5

6

ϕ

Bessel’s

Pendulum

Numerics

Figure 20. Asymptotics using the Pendulum and Bessel approximations
in the ϕ0 → 0 limit compared to the numerical solution of the Painlevé
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