Abstract
We develop a theory for distributed branch points and investigate their role in determining the shape and influencing the mechanics of thin hyperbolic objects. We show that branch points are the natural topological defects in hyperbolic sheets, they carry a topological index which gives them a degree of robustness, and they can influence the overall morphology of a hyperbolic surface without concentrating energy. We develop a discrete differential geometric approach to study the deformations of hyperbolic objects with distributed branch points. We present evidence that the maximum curvature of surfaces with geodesic radius R containing branch points grow sub-exponentially, \(O(e^{c\sqrt{R}})\) in contrast to the exponential growth \(O(e^{c' R})\) for surfaces without branch points. We argue that, to optimize norms of the curvature, i.e., the bending energy, distributed branch points are energetically preferred in sufficiently large pseudospherical surfaces. Further, they are distributed so that they lead to fractal-like recursive buckling patterns.



















Similar content being viewed by others
References
Abramowitz, M., Stegun, I. A. (Eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1992). Reprint of the 1972 edition
Acharya, A., Venkataramani, S.C.: Mechanics of moving defects in growing sheets: 3-d, small deformation theory. Mater. Theory 4(1), 2 (2020)
Amar, M.B., Pomeau, Y.: Crumpled paper. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 453(1959), 729–755 (1997)
Amsler, M.-H.: Des surfaces à courbure négative constante dans l’espace à trois dimensions et de leurs singularités. Mathematische Annalen 130(3), 234–256 (1955)
Anderson, J.: Hyperbolic Geometry. Springer, London (2005)
Asratian, A.S., Denley, T.M.J., Häggkvist, R.: Bipartite Graphs and Their Applications. Cambridge University Press, Cambridge (1998)
Audoly, B., Boudaoud, A.: ‘ruban à godets’: an elastic model for ripples in plant leaves. Comptes Rendus Mecanique 330(12), 831–836 (2002)
Audoly, B., Boudaoud, A.: Self-similar structures near boundaries in strained systems. Phys. Rev. Lett. 91(8), 086105 (2003)
Ball, J.M., Knowles, G.: A numerical method for detecting singular minimizers. Numer. Math. 51(2), 181–197 (1987)
Ball, J.M., Mizel, V.J.: One-dimensional variational problems whose minimizers do not satisfy the Euler–Lagrange equation. Arch. Ration. Mech. Anal. 90(4), 325–388 (1985)
Bella, P., Kohn, R.V.: Metric-induced wrinkling of a thin elastic sheet. J. Nonlinear Sci. 24(6), 1147–1176 (2014a)
Bella, P., Kohn, R.V.: Wrinkles as the result of compressive stresses in an annular thin film. Commun. Pure Appl. Math. 67(5), 693–747 (2014b)
Bhattacharya, K., Lewicka, M., Schäffner, M.: Plates with incompatible prestrain. Arch. Ration. Mech. Anal. 221(1), 143–181 (2016)
Bobenko, A.I., Eitner, U.: Painlevé Equations in the Differential Geometry of Surfaces, vol. 1753. Springer, Berlin (2000)
Bobenko, A.I., Suris, Y.B.: Discrete Differential Geometry: Integrable Structure, volume 98 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2008)
Borisov, Y.F.: On the connection between the spatial form of smooth surfaces and their intrinsic geometry. Vestnik Leningrad. Univ. 14(13), 20–26 (1959)
Borisov, Y.F.: Irregular surfaces of the class \(C^{1,\beta }\) with an analytic metric. Sibirsk. Mat. Zh. 45(1), 25–61 (2004). English translation in Siberian Math. J. 45 (2004), no. 1, 19–52
Brezis, H., Nirenberg, L.: Degree theory and BMO. I. Compact manifolds without boundaries. Sel. Math. N.S. 1(2), 197–263 (1995)
Brezis, H., Nirenberg, L.: Degree theory and BMO. II. Compact manifolds with boundaries. Sel. Math. N.S. 2(3), 309–368 (1996). With an appendix by the authors and Petru Mironescu
Cesari, L.: Optimization—Theory and Applications, volume 17 of Applications of Mathematics (New York). Springer, New York (1983). Problems with Ordinary Differential Equations
Chopin, J., Démery, V., Davidovitch, B.: Roadmap to the morphological instabilities of a stretched twisted ribbon. J. Elast. 119(1–2), 137–189 (2014)
Ciarlet, P.G.: A justification of the von Kármán equations. Arch. Ration. Mech. Anal. 73(4), 349–389 (1980)
Conti, S., De Lellis, C., Székelyhidi, L., Jr.Jr.: \(h\)-principle and rigidity for \(C^{1,\alpha }\) isometric embeddings. In: Nonlinear Partial Differential Equations, volume 7 of Abel Symposium, pp. 83–116. Springer, Heidelberg (2012)
Davidovitch, B., Schroll, R.D., Vella, D., Adda-Bedia, M., Cerda, E.A.: Prototypical model for tensional wrinkling in thin sheets. Proc. Natl. Acad. Sci. 108(45), 18227–18232 (2011)
Davidovitch, B., Sun, Y., Grason, G.M.: Geometrically incompatible confinement of solids. Proc. Natl. Acad. Sci. 116(5), 1483–1488 (2019)
De Lellis, C., Inauen, D.: \(C^{1, \alpha }\) isometric embeddings of polar caps. Adv. Math. 363, 106996, 39 (2020)
De Lellis, C., Inauen, D., Székelyhidi Jr., L.: A Nash–Kuiper theorem for \(C^{1,1/5-\delta }\) immersions of surfaces in 3 dimensions. Rev. Mat. Iberoam. 34(3), 1119–1152 (2018)
Dorfmeister, J.F., Sterling, I.: Pseudospherical surfaces of low differentiability. Adv. Geom. 16(1), 1–20 (2016)
Efimov, N.V.: Impossibility of an isometric imbedding in Euclidean \(3\)-space of certain manifolds with negative Gaussian curvature. Dok. Akad. Nauk SSSR 146, 296–299 (1962)
Efimov, N.V.: Generation of singularites on surfaces of negative curvature. Matematicheskii Sbornik 106(2), 286–320 (1964)
Efrati, E., Klein, Y., Aharoni, H., Sharon, E.: Spontaneous buckling of elastic sheets with a prescribed non-Euclidean metric. Phys. D Nonlinear Phenom. 235(1), 29–32 (2007)
Efrati, E., Sharon, E., Kupferman, R.: Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids 57(4), 762–775 (2009)
Efrati, E., Sharon, E., Kupferman, R.: The metric description of elasticity in residually stressed soft materials. Soft Matter 9(34), 8187–8197 (2013)
Eisenhart, L.P.: A Treatise on the Differential Geometry of Curves and Surfaces. Ginn, London (1909)
Evans, L.C.: Partial Differential Equations. American Mathematical Society, Phildelphia (1998)
Foss, M., Hrusa, W.J., Mizel, V.J.: The Lavrentiev gap phenomenon in nonlinear elasticity. Arch. Ration. Mech. Anal. 167(4), 337–365 (2003)
Friesecke, G., James, R.D., Müller, S.: The Föppl–von Kármán plate theory as a low energy \(\Gamma \)-limit of nonlinear elasticity. Comptes Rendus Mathematique 335(2), 201–206 (2002)
Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence. Arch. Ration. Mech. Anal. 180(2), 183–236 (2006)
Gemmer, J.A., Venkataramani, S.C.: Shape selection in non-Euclidean plates. Phys. D Nonlinear Phenom. 240(19), 1536–1552 (2011)
Gemmer, J.A., Venkataramani, S.C.: Defects and boundary layers in non-Euclidean plates. Nonlinearity 25(12), 3553 (2012)
Gemmer, J.A., Venkataramani, S.C.: Shape transitions in hyperbolic non-Euclidean plates. Soft Matter 9(34), 8151–8161 (2013)
Gemmer, J., Sharon, E., Shearman, T., Venkataramani, S.C.: Isometric immersions, energy minimization and self-similar buckling in non-Euclidean elastic sheets. Europhys. Lett. 114(2), 24003 (2016)
Gray, A.: Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd edn. CRC Press, Boca Raton (1998)
Guven, J., Müller, M.M., Vázquez-Montejo, P.: Isometric bending requires local constraints on free edges. Math. Mech. Solids 24(12), 4051–4077 (2019). 2020/06/26
Hamburger, H.: Über kurvennetze mit isolierten singularitäten auf geschlossenen flächen. Math. Z. 19(1), 50–66 (1924)
Han, Q., Hong, J.-X.: Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, vol. 130. American Mathematical Society, Providence (2006)
Hartman, P., Nirenberg, L.: On spherical image maps whose Jacobians do not change sign. Am. J. Math. 81, 901–920 (1959)
Hartman, P., Wintner, A.: On the asymptotic curves of a surface. Am. J. Math. 73(1), 149–172 (1951)
Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
Henderson, D.W., Taimina, D.: Crocheting the hyperbolic plane. Math. Intell. 23(2), 17–28 (2001)
Hilbert, D.: Über Flächen von constanter Gaussscher Krümmung. Trans. Am. Math. Soc. 2(1), 87–99 (1901)
Holmgren, E.: Sur les surfaces à courbure constante négative. CR Acad. Sci. Paris 134, 740–743 (1902)
Hong, J.X.: Realization in \({ R}^3\) of complete Riemannian manifolds with negative curvature. Comm. Anal. Geom. 1(3–4), 487–514 (1993)
Hornung, P.: Approximation of flat \(W^{2,2}\) isometric immersions by smooth ones. Arch. Ration. Mech. Anal. 199(3), 1015–1067 (2011)
Hornung, P., Velčić, I.: Regularity of intrinsically convex \(W^{2,2}\) surfaces and a derivation of a homogenized bending theory of convex shells. J. Math. Pures Appl. 9(115), 1–23 (2018)
Huang, C., Wang, Z., Quinn, D., Suresh, S., Hsia, K.J.: Differential growth and shape formation in plant organs. Proc. Natl. Acad. Sci. 115(49), 12359–12364 (2018)
Huhnen-Venedey, E., Rörig, T.: Discretization of asymptotic line parametrizations using hyperboloid surface patches. Geometriae Dedicata 168(1), 265–289 (2014)
Ishikawa, G.-O., Machida, Y.: Singularities of improper affine spheres and surfaces of constant Gaussian curvature. Int. J. Math. 17(3), 269–293 (2006)
Ivey, T.A., Landsberg, J.M.: Cartan for Beginners, volume 61 of Graduate Studies in Mathematics. American Mathematical Society Providence (2003)
John, F.: On quasi-isometric mappings. I. Comm. Pure Appl. Math. 21, 77–110 (1968)
John, F.: On quasi-isometric mappings. II. Comm. Pure Appl. Math. 22, 265–278 (1969)
Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology, volume 157 of Applied Mathematical Sciences. Springer, New York (2004)
Kim, J., Hanna, J.A., Byun, M., Santangelo, C.D., Hayward, R.C.: Designing responsive buckled surfaces by halftone gel lithography. Science 335(6073), 1201–1205 (2012a)
Kim, J., Hanna, J.A., Hayward, R.C., Santangelo, C.D.: Thermally responsive rolling of thin gel strips with discrete variations in swelling. Soft Matter 8(8), 2375–2381 (2012b)
Kirchheim, B.: Rigidity and Geometry of Microstructures. University of Leipzig, Habilitation (2001)
Klein, Y., Efrati, E., Sharon, E.: Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315(5815), 1116–1120 (2007)
Klein, Y., Venkataramani, S., Sharon, E.: Experimental study of shape transitions and energy scaling in thin non-Euclidean plates. Phys. Rev. Lett. 106(11), 118303 (2011)
Kuiper, N.H.: On \(C^1\)-isometric imbeddings. I, II. Nederl. Akad. Wetensch. Proc. Ser. A. 58 Indag. Math. 17, 545–556, 683–689 (1955)
Kupferman, R., Solomon, J.P.: A Riemannian approach to reduced plate, shell, and rod theories. J. Funct. Anal. 266(5), 2989–3039 (2014)
Lavrentieff, M.: Sur quelques problemes du calcul des variations. Annali di Matematica Pura ed Applicata 4(1), 7–28 (1926)
Lewicka, M., Pakzad, M.R.: Scaling laws for non-Euclidean plates and the \( W^{2, 2}\) isometric immersions of Riemannian metrics. ESAIM Control Optim. Calc. Var. 17(04), 1158–1173 (2011)
Lewicka, M., Mahadevan, L., Pakzad, M.R.: Models for elastic shells with incompatible strains. Proc. R. Soc. Lond. Ser. A 470(2165), 20130604 (2014)
Liang, H., Mahadevan, L.: The shape of a long leaf. Proc. Natl. Acad. Sci. 106(52), 22049–22054 (2009)
Liang, H., Mahadevan, L.: Growth, geometry, and mechanics of a blooming lily. Proc. Natl. Acad. Sci. 108(14), 5516–5521 (2011)
Lobkovsky, A., Gentges, S., Li, H., Morse, D., Witten, T.A.: Scaling properties of stretching ridges in a crumpled elastic sheet. Science 270, 1482 (1995)
Louis-Rosenberg, J.: Floraform. http://n-e-r-v-o-u-s.com/blog/?p=6721 (2014). Accessed 21 June 2020
Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1892)
Marder, M.: The shape of the edge of a leaf. Found. Phys. 33(12), 1743–1768 (2003)
Marder, M., Sharon, E., Smith, S., Roman, B.: Theory of edges of leaves. Europhys. Lett. 62(4), 498 (2003)
Martio, O., Väisälä, J.: Elliptic equations and maps of bounded length distortion. Math. Ann. 282(3), 423–443 (1988)
Meyer, G.: 2013 Bridges Conference: Mathematical Art Galleries. http://gallery.bridgesmathart.org/exhibitions/2013-bridges-conference/gabriele_meyer (2013). Accessed 21 June 2020
Milnor, T.K.: Efimov’s theorem about complete immersed surfaces of negative curvature. Adv. Math. 8(3), 474–543 (1972)
Müller, S.: Mathematical problems in thin elastic sheets: Scaling limits, packing, crumpling and singularities. In: Ball, J., Marcellini, P. (eds.) Vector-Valued Partial Differential Equations and Applications: Cetraro. Italy 2013, pp. 125–193. Springer, Cham (2017)
Nash, J.: \(C^1\) isometric imbeddings. Ann. Math. Second Ser. 60(3), 383–396 (1954)
Nechaev, S., Polovnikov, K.: Buckling and Wrinkling from Geometric and Energetic Viewpoints (2015)
Nechaev, S., Polovnikov, K.: From geometric optics to plants: the eikonal equation for buckling. Soft Matter 13, 1420–1429 (2017)
Nechaev, S., Voituriez, R.: On the plant leaf’s boundary, jupe à godets’ and conformal embeddings. J. Phys. A Math. Gen. 34(49), 11069 (2001)
Olbermann, H.: The one-dimensional model for d-cones revisited. Adv. Calc. Var. 9(3), 201–215 (2016)
Pakzad, M.R.: On the Sobolev space of isometric immersions. J. Differ. Geom. 66(1), 47–69 (2004)
Rogers, C., Schief, W.K.: Bäcklund and Darboux transformations: geometry and modern applications in soliton theory, vol. 30. Cambridge University Press, Cambridge (2002)
Rozendorn, È.R.: On complete surfaces of negative curvature \(K\le -1\) in the Euclidean spaces \(E_{3}\) and \(E_{4}\). Mat. Sb. N.S. 58(100), 453–478 (1962a)
Rozendorn, È.R.: Properties of asymptotic lines on surfaces with slowly varying negative curvature. Dokl. Akad. Nauk SSSR 145, 538–540 (1962b)
Rozendorn, È.R.: Weakly irregular surfaces of negative curvature. Uspehi Mat. Nauk 21(5 (131)), 59–116 (1966)
Rozendorn, E.R.: Surfaces of negative curvature. In: Burago, Y.D., Zalgaller, V.A. (eds.) Geometry III, volume 48 of Encyclopaedia of Mathematical Sciences, pp. 87–178. Springer, Berlin (1992)
Sauer, R.: Parallelogrammgitter als Modelle pseudosphärischer Flächen. Mathematische Zeitschrift 52(1), 611–622 (1950)
Schmidt, B.: Minimal energy configurations of strained multi-layers. Calc. Var. Partial Differ. Equ. 30(4), 477–497 (2007a)
Schmidt, B.: Plate theory for stressed heterogeneous multilayers of finite bending energy. J. Math. Pures Appl. (9) 88(1), 107–122 (2007b)
Sharon, E., Sahaf, M.: The mechanics of leaf growth on large scales. In: Geitmann, A., Gril, J. (eds.) Plant Biomechanics: From Structure to Function at Multiple Scales, pp. 109–126. Springer, Berlin (2018)
Sharon, E., Roman, B., Marder, M., Shin, G.-S., Swinney, H.L.: Buckling cascades in free sheets. Nature 419(6907), 579 (2002)
Sharon, E., Marder, M., Swinney, H.L.: Leaves, flowers and garbage bags: making waves. Am. Sci. 92(3), 254 (2004)
Sharon, E., Roman, B., Swinney, H.L.: Geometrically driven wrinkling observed in free plastic sheets and leaves. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 75(4), 046211 (2007)
Stoker, J.J.: Differential Geometry. Wiley Classics Library. Wiley, New York (1989). Reprint of the 1969 original, A Wiley-Interscience Publication
Timoshenko, S.: Theory of Plates and Shells. McGraw-Hill, New York (1959)
Tobasco, I.: Curvature-driven wrinkling of thin elastic shells. arXiv preprint arXiv:1906.02153 (2019)
Venkataramani, S.C.: Lower bounds for the energy in a crumpled elastic sheet—a minimal ridge. Nonlinearity 17(1), 301 (2003)
Vetter, R., Stoop, N., Jenni, T., Wittel, F.K., Herrmann, H.J.: Subdivision shell elements with anisotropic growth. Int. J. Numer. Methods Eng. 95(9), 791–810 (2013)
Weinstein, T.: An Introduction to Lorentz Surfaces, volume 22 of De Gruyter Expositions in Mathematics. Walter de Gruyter & Co., Berlin (1996)
Wertheim, M., Wertheim, C.: Crochet Coral Reef. Institute for Figuring, Los Angeles, (2015). With contributions by Leslie Dick, Marion Endt-Jones and Anna Mayer and a foreword by Donna Haraway
Wissler, Ch.: Globale Tschebyscheff-Netze auf Riemannschen Mannigfaltigkeiten und Fortsetzung von Flächen konstanter negativer Krümmung. Comment. Math. Helv. 47, 348–372 (1972)
Wunderlich, W.: Zur Differenzengeometrie der Flächen konstanter negativer Krümmung. Österreich. Akad. Wiss. Math.-Nat. Kl. S.-B. IIa. 160, 39–77 (1951)
Acknowledgements
We are grateful to Amit Acharya, Andrew Sageman-Furnas, David Glickenstein, Eran Sharon, John Gemmer and Kenneth Yamamoto for many stimulating discussions. SV gratefully acknowledges the hospitality of the Center for Nonlinear Analysis at Carnegie Mellon University, the Oxford Center for Industrial and Applied Math at Oxford University and the Hausdorff Institute at the University of Bonn where portions of this work were carried out. TS was partially supported by a Michael Tabor fellowship from the Graduate Interdisciplinary Program in Applied Mathematics at the University of Arizona. SV was partially supported by the Simons Foundation through Awards 524875 and 560103 and partially supported by the NSF Award DMR-1923922.
Author information
Authors and Affiliations
Contributions
This article grew out of the Ph.D thesis work of TS, supervised by SV. TS wrote the initial draft. SV revised the draft and incorporated additional material/proofs. Both authors contributed to performing the research reported here. Both authors read and approved the final manuscript.
Corresponding author
Additional information
Communicated by Eliot Fried.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Supplementary material 1 (mov 1961 KB)
Appendix: Asymptotics of Painlevé III
Appendix: Asymptotics of Painlevé III
We can get more accurate estimates than implied by the bounds in (5.6). For \(\varphi \ll 1,\) the Painlevé III equation (3.18) and the associated boundary conditions reduce to
The solution is given by \(\varphi (z) = \varphi _0 I_0(z)\), where \(I_0\) is the modified Bessel function of the first kind (Abramowitz and Stegun 1992, §9.6). From the small and large z asymptotics of \(I_0\) (Abramowitz and Stegun 1992, §9.7), we get
For the regime \(z \gg 1, \varphi \approx \pi \), we have the weakly damped pendulum equation:
with asymptotic solutions of the form
for a slowly varying amplitude A that changes over many cycles of the pendulum. We are only interested in the first crossing \(\phi (z^*) = \pi \), so we can assume that A is constant and determine A by matching the large z asymptotics of the Bessel solution with the pendulum solution. From the Bessel solution, we derive initial data for the pendulum equation, fixing the energy level for this conservative system:
where we match at such a point z that \(z \gg 1, \delta \ll 1\). The energy of the pendulum solution is given by
as \(\cos \varphi \) is the potential and \(\delta \ll 1\). Substituting the data into the energy, we find
which in the case of slowing varying A simplifies to
Asymptotics using the Pendulum and Bessel approximations in the \(\varphi _0\rightarrow 0\) limit compared to the numerical solution of the Painlevé equation for \(\varphi _0 = \frac{\pi }{100}\). Our interest is in approximating the exact solution well on an interval \([0,z^*]\) where \(z = z^* \approx 9\) is the first instance where \(\varphi (z) = \pi \), depicted by the dashed horizontal line in the figure
We are now equipped with a complete asymptotic description of the solutions to Painlevé III for an initial angle \(\varphi _0\). The description is divided into three regimes: \(z \ll 1\) and \(\varphi _0 \lesssim \varphi \ll \pi \), \(z \gg 1\) and \(\varphi _0 \ll \varphi \lesssim \pi \), and finally \(z\gg 1\) and \(\varphi \approx \pi \):
A numerical validation of these asymptotic relations is illustrated in Fig. 20 (we consider \(\varphi _0 = \frac{\pi }{100}\)). Using the expressions in (A.5) instead of the bounds (5.6) gives the optimal constant \(C(\phi ^*) =1\) in Lemma 5.1.
Rights and permissions
About this article
Cite this article
Shearman, T.L., Venkataramani, S.C. Distributed Branch Points and the Shape of Elastic Surfaces with Constant Negative Curvature. J Nonlinear Sci 31, 13 (2021). https://doi.org/10.1007/s00332-020-09657-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00332-020-09657-2
Keywords
- Pseudospherical immersions
- Discrete differential geometry
- Branch points
- Self-similar buckling patterns
- Extreme mechanics