Skip to main content
Log in

Distributed Branch Points and the Shape of Elastic Surfaces with Constant Negative Curvature

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We develop a theory for distributed branch points and investigate their role in determining the shape and influencing the mechanics of thin hyperbolic objects. We show that branch points are the natural topological defects in hyperbolic sheets, they carry a topological index which gives them a degree of robustness, and they can influence the overall morphology of a hyperbolic surface without concentrating energy. We develop a discrete differential geometric approach to study the deformations of hyperbolic objects with distributed branch points. We present evidence that the maximum curvature of surfaces with geodesic radius R containing branch points grow sub-exponentially, \(O(e^{c\sqrt{R}})\) in contrast to the exponential growth \(O(e^{c' R})\) for surfaces without branch points. We argue that, to optimize norms of the curvature, i.e., the bending energy, distributed branch points are energetically preferred in sufficiently large pseudospherical surfaces. Further, they are distributed so that they lead to fractal-like recursive buckling patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Abramowitz, M., Stegun, I. A. (Eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1992). Reprint of the 1972 edition

  • Acharya, A., Venkataramani, S.C.: Mechanics of moving defects in growing sheets: 3-d, small deformation theory. Mater. Theory 4(1), 2 (2020)

    Article  Google Scholar 

  • Amar, M.B., Pomeau, Y.: Crumpled paper. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 453(1959), 729–755 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Amsler, M.-H.: Des surfaces à courbure négative constante dans l’espace à trois dimensions et de leurs singularités. Mathematische Annalen 130(3), 234–256 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson, J.: Hyperbolic Geometry. Springer, London (2005)

    MATH  Google Scholar 

  • Asratian, A.S., Denley, T.M.J., Häggkvist, R.: Bipartite Graphs and Their Applications. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  • Audoly, B., Boudaoud, A.: ‘ruban à godets’: an elastic model for ripples in plant leaves. Comptes Rendus Mecanique 330(12), 831–836 (2002)

    Article  MATH  Google Scholar 

  • Audoly, B., Boudaoud, A.: Self-similar structures near boundaries in strained systems. Phys. Rev. Lett. 91(8), 086105 (2003)

    Article  Google Scholar 

  • Ball, J.M., Knowles, G.: A numerical method for detecting singular minimizers. Numer. Math. 51(2), 181–197 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Ball, J.M., Mizel, V.J.: One-dimensional variational problems whose minimizers do not satisfy the Euler–Lagrange equation. Arch. Ration. Mech. Anal. 90(4), 325–388 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Bella, P., Kohn, R.V.: Metric-induced wrinkling of a thin elastic sheet. J. Nonlinear Sci. 24(6), 1147–1176 (2014a)

    Article  MathSciNet  MATH  Google Scholar 

  • Bella, P., Kohn, R.V.: Wrinkles as the result of compressive stresses in an annular thin film. Commun. Pure Appl. Math. 67(5), 693–747 (2014b)

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharya, K., Lewicka, M., Schäffner, M.: Plates with incompatible prestrain. Arch. Ration. Mech. Anal. 221(1), 143–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Bobenko, A.I., Eitner, U.: Painlevé Equations in the Differential Geometry of Surfaces, vol. 1753. Springer, Berlin (2000)

    MATH  Google Scholar 

  • Bobenko, A.I., Suris, Y.B.: Discrete Differential Geometry: Integrable Structure, volume 98 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2008)

  • Borisov, Y.F.: On the connection between the spatial form of smooth surfaces and their intrinsic geometry. Vestnik Leningrad. Univ. 14(13), 20–26 (1959)

    MathSciNet  MATH  Google Scholar 

  • Borisov, Y.F.: Irregular surfaces of the class \(C^{1,\beta }\) with an analytic metric. Sibirsk. Mat. Zh. 45(1), 25–61 (2004). English translation in Siberian Math. J. 45 (2004), no. 1, 19–52

    MathSciNet  Google Scholar 

  • Brezis, H., Nirenberg, L.: Degree theory and BMO. I. Compact manifolds without boundaries. Sel. Math. N.S. 1(2), 197–263 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Brezis, H., Nirenberg, L.: Degree theory and BMO. II. Compact manifolds with boundaries. Sel. Math. N.S. 2(3), 309–368 (1996). With an appendix by the authors and Petru Mironescu

    Article  MathSciNet  MATH  Google Scholar 

  • Cesari, L.: Optimization—Theory and Applications, volume 17 of Applications of Mathematics (New York). Springer, New York (1983). Problems with Ordinary Differential Equations

  • Chopin, J., Démery, V., Davidovitch, B.: Roadmap to the morphological instabilities of a stretched twisted ribbon. J. Elast. 119(1–2), 137–189 (2014)

    MathSciNet  MATH  Google Scholar 

  • Ciarlet, P.G.: A justification of the von Kármán equations. Arch. Ration. Mech. Anal. 73(4), 349–389 (1980)

    Article  MATH  Google Scholar 

  • Conti, S., De Lellis, C., Székelyhidi, L., Jr.Jr.: \(h\)-principle and rigidity for \(C^{1,\alpha }\) isometric embeddings. In: Nonlinear Partial Differential Equations, volume 7 of Abel Symposium, pp. 83–116. Springer, Heidelberg (2012)

  • Davidovitch, B., Schroll, R.D., Vella, D., Adda-Bedia, M., Cerda, E.A.: Prototypical model for tensional wrinkling in thin sheets. Proc. Natl. Acad. Sci. 108(45), 18227–18232 (2011)

    Article  MATH  Google Scholar 

  • Davidovitch, B., Sun, Y., Grason, G.M.: Geometrically incompatible confinement of solids. Proc. Natl. Acad. Sci. 116(5), 1483–1488 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • De Lellis, C., Inauen, D.: \(C^{1, \alpha }\) isometric embeddings of polar caps. Adv. Math. 363, 106996, 39 (2020)

    MATH  Google Scholar 

  • De Lellis, C., Inauen, D., Székelyhidi Jr., L.: A Nash–Kuiper theorem for \(C^{1,1/5-\delta }\) immersions of surfaces in 3 dimensions. Rev. Mat. Iberoam. 34(3), 1119–1152 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Dorfmeister, J.F., Sterling, I.: Pseudospherical surfaces of low differentiability. Adv. Geom. 16(1), 1–20 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Efimov, N.V.: Impossibility of an isometric imbedding in Euclidean \(3\)-space of certain manifolds with negative Gaussian curvature. Dok. Akad. Nauk SSSR 146, 296–299 (1962)

    MathSciNet  Google Scholar 

  • Efimov, N.V.: Generation of singularites on surfaces of negative curvature. Matematicheskii Sbornik 106(2), 286–320 (1964)

    MathSciNet  Google Scholar 

  • Efrati, E., Klein, Y., Aharoni, H., Sharon, E.: Spontaneous buckling of elastic sheets with a prescribed non-Euclidean metric. Phys. D Nonlinear Phenom. 235(1), 29–32 (2007)

    Article  Google Scholar 

  • Efrati, E., Sharon, E., Kupferman, R.: Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids 57(4), 762–775 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Efrati, E., Sharon, E., Kupferman, R.: The metric description of elasticity in residually stressed soft materials. Soft Matter 9(34), 8187–8197 (2013)

    Article  Google Scholar 

  • Eisenhart, L.P.: A Treatise on the Differential Geometry of Curves and Surfaces. Ginn, London (1909)

    MATH  Google Scholar 

  • Evans, L.C.: Partial Differential Equations. American Mathematical Society, Phildelphia (1998)

    MATH  Google Scholar 

  • Foss, M., Hrusa, W.J., Mizel, V.J.: The Lavrentiev gap phenomenon in nonlinear elasticity. Arch. Ration. Mech. Anal. 167(4), 337–365 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Friesecke, G., James, R.D., Müller, S.: The Föppl–von Kármán plate theory as a low energy \(\Gamma \)-limit of nonlinear elasticity. Comptes Rendus Mathematique 335(2), 201–206 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence. Arch. Ration. Mech. Anal. 180(2), 183–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Gemmer, J.A., Venkataramani, S.C.: Shape selection in non-Euclidean plates. Phys. D Nonlinear Phenom. 240(19), 1536–1552 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Gemmer, J.A., Venkataramani, S.C.: Defects and boundary layers in non-Euclidean plates. Nonlinearity 25(12), 3553 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Gemmer, J.A., Venkataramani, S.C.: Shape transitions in hyperbolic non-Euclidean plates. Soft Matter 9(34), 8151–8161 (2013)

    Article  Google Scholar 

  • Gemmer, J., Sharon, E., Shearman, T., Venkataramani, S.C.: Isometric immersions, energy minimization and self-similar buckling in non-Euclidean elastic sheets. Europhys. Lett. 114(2), 24003 (2016)

    Article  Google Scholar 

  • Gray, A.: Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd edn. CRC Press, Boca Raton (1998)

    MATH  Google Scholar 

  • Guven, J., Müller, M.M., Vázquez-Montejo, P.: Isometric bending requires local constraints on free edges. Math. Mech. Solids 24(12), 4051–4077 (2019). 2020/06/26

    Article  MathSciNet  MATH  Google Scholar 

  • Hamburger, H.: Über kurvennetze mit isolierten singularitäten auf geschlossenen flächen. Math. Z. 19(1), 50–66 (1924)

    Article  MathSciNet  MATH  Google Scholar 

  • Han, Q., Hong, J.-X.: Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, vol. 130. American Mathematical Society, Providence (2006)

    MATH  Google Scholar 

  • Hartman, P., Nirenberg, L.: On spherical image maps whose Jacobians do not change sign. Am. J. Math. 81, 901–920 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  • Hartman, P., Wintner, A.: On the asymptotic curves of a surface. Am. J. Math. 73(1), 149–172 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  • Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  • Henderson, D.W., Taimina, D.: Crocheting the hyperbolic plane. Math. Intell. 23(2), 17–28 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Hilbert, D.: Über Flächen von constanter Gaussscher Krümmung. Trans. Am. Math. Soc. 2(1), 87–99 (1901)

    MATH  Google Scholar 

  • Holmgren, E.: Sur les surfaces à courbure constante négative. CR Acad. Sci. Paris 134, 740–743 (1902)

    MATH  Google Scholar 

  • Hong, J.X.: Realization in \({ R}^3\) of complete Riemannian manifolds with negative curvature. Comm. Anal. Geom. 1(3–4), 487–514 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Hornung, P.: Approximation of flat \(W^{2,2}\) isometric immersions by smooth ones. Arch. Ration. Mech. Anal. 199(3), 1015–1067 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Hornung, P., Velčić, I.: Regularity of intrinsically convex \(W^{2,2}\) surfaces and a derivation of a homogenized bending theory of convex shells. J. Math. Pures Appl. 9(115), 1–23 (2018)

    Article  MATH  Google Scholar 

  • Huang, C., Wang, Z., Quinn, D., Suresh, S., Hsia, K.J.: Differential growth and shape formation in plant organs. Proc. Natl. Acad. Sci. 115(49), 12359–12364 (2018)

    Article  Google Scholar 

  • Huhnen-Venedey, E., Rörig, T.: Discretization of asymptotic line parametrizations using hyperboloid surface patches. Geometriae Dedicata 168(1), 265–289 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Ishikawa, G.-O., Machida, Y.: Singularities of improper affine spheres and surfaces of constant Gaussian curvature. Int. J. Math. 17(3), 269–293 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Ivey, T.A., Landsberg, J.M.: Cartan for Beginners, volume 61 of Graduate Studies in Mathematics. American Mathematical Society Providence (2003)

  • John, F.: On quasi-isometric mappings. I. Comm. Pure Appl. Math. 21, 77–110 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  • John, F.: On quasi-isometric mappings. II. Comm. Pure Appl. Math. 22, 265–278 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  • Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology, volume 157 of Applied Mathematical Sciences. Springer, New York (2004)

  • Kim, J., Hanna, J.A., Byun, M., Santangelo, C.D., Hayward, R.C.: Designing responsive buckled surfaces by halftone gel lithography. Science 335(6073), 1201–1205 (2012a)

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, J., Hanna, J.A., Hayward, R.C., Santangelo, C.D.: Thermally responsive rolling of thin gel strips with discrete variations in swelling. Soft Matter 8(8), 2375–2381 (2012b)

    Article  Google Scholar 

  • Kirchheim, B.: Rigidity and Geometry of Microstructures. University of Leipzig, Habilitation (2001)

    MATH  Google Scholar 

  • Klein, Y., Efrati, E., Sharon, E.: Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315(5815), 1116–1120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Klein, Y., Venkataramani, S., Sharon, E.: Experimental study of shape transitions and energy scaling in thin non-Euclidean plates. Phys. Rev. Lett. 106(11), 118303 (2011)

    Article  Google Scholar 

  • Kuiper, N.H.: On \(C^1\)-isometric imbeddings. I, II. Nederl. Akad. Wetensch. Proc. Ser. A. 58 Indag. Math. 17, 545–556, 683–689 (1955)

  • Kupferman, R., Solomon, J.P.: A Riemannian approach to reduced plate, shell, and rod theories. J. Funct. Anal. 266(5), 2989–3039 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Lavrentieff, M.: Sur quelques problemes du calcul des variations. Annali di Matematica Pura ed Applicata 4(1), 7–28 (1926)

    Article  MathSciNet  MATH  Google Scholar 

  • Lewicka, M., Pakzad, M.R.: Scaling laws for non-Euclidean plates and the \( W^{2, 2}\) isometric immersions of Riemannian metrics. ESAIM Control Optim. Calc. Var. 17(04), 1158–1173 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Lewicka, M., Mahadevan, L., Pakzad, M.R.: Models for elastic shells with incompatible strains. Proc. R. Soc. Lond. Ser. A 470(2165), 20130604 (2014)

    Google Scholar 

  • Liang, H., Mahadevan, L.: The shape of a long leaf. Proc. Natl. Acad. Sci. 106(52), 22049–22054 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, H., Mahadevan, L.: Growth, geometry, and mechanics of a blooming lily. Proc. Natl. Acad. Sci. 108(14), 5516–5521 (2011)

    Article  Google Scholar 

  • Lobkovsky, A., Gentges, S., Li, H., Morse, D., Witten, T.A.: Scaling properties of stretching ridges in a crumpled elastic sheet. Science 270, 1482 (1995)

    Article  Google Scholar 

  • Louis-Rosenberg, J.: Floraform. http://n-e-r-v-o-u-s.com/blog/?p=6721 (2014). Accessed 21 June 2020

  • Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1892)

    MATH  Google Scholar 

  • Marder, M.: The shape of the edge of a leaf. Found. Phys. 33(12), 1743–1768 (2003)

    Article  Google Scholar 

  • Marder, M., Sharon, E., Smith, S., Roman, B.: Theory of edges of leaves. Europhys. Lett. 62(4), 498 (2003)

    Article  Google Scholar 

  • Martio, O., Väisälä, J.: Elliptic equations and maps of bounded length distortion. Math. Ann. 282(3), 423–443 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Meyer, G.: 2013 Bridges Conference: Mathematical Art Galleries. http://gallery.bridgesmathart.org/exhibitions/2013-bridges-conference/gabriele_meyer (2013). Accessed 21 June 2020

  • Milnor, T.K.: Efimov’s theorem about complete immersed surfaces of negative curvature. Adv. Math. 8(3), 474–543 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Müller, S.: Mathematical problems in thin elastic sheets: Scaling limits, packing, crumpling and singularities. In: Ball, J., Marcellini, P. (eds.) Vector-Valued Partial Differential Equations and Applications: Cetraro. Italy 2013, pp. 125–193. Springer, Cham (2017)

  • Nash, J.: \(C^1\) isometric imbeddings. Ann. Math. Second Ser. 60(3), 383–396 (1954)

    Article  MATH  Google Scholar 

  • Nechaev, S., Polovnikov, K.: Buckling and Wrinkling from Geometric and Energetic Viewpoints (2015)

  • Nechaev, S., Polovnikov, K.: From geometric optics to plants: the eikonal equation for buckling. Soft Matter 13, 1420–1429 (2017)

    Article  Google Scholar 

  • Nechaev, S., Voituriez, R.: On the plant leaf’s boundary, jupe à godets’ and conformal embeddings. J. Phys. A Math. Gen. 34(49), 11069 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Olbermann, H.: The one-dimensional model for d-cones revisited. Adv. Calc. Var. 9(3), 201–215 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Pakzad, M.R.: On the Sobolev space of isometric immersions. J. Differ. Geom. 66(1), 47–69 (2004)

    MathSciNet  MATH  Google Scholar 

  • Rogers, C., Schief, W.K.: Bäcklund and Darboux transformations: geometry and modern applications in soliton theory, vol. 30. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  • Rozendorn, È.R.: On complete surfaces of negative curvature \(K\le -1\) in the Euclidean spaces \(E_{3}\) and \(E_{4}\). Mat. Sb. N.S. 58(100), 453–478 (1962a)

    MathSciNet  Google Scholar 

  • Rozendorn, È.R.: Properties of asymptotic lines on surfaces with slowly varying negative curvature. Dokl. Akad. Nauk SSSR 145, 538–540 (1962b)

    MathSciNet  Google Scholar 

  • Rozendorn, È.R.: Weakly irregular surfaces of negative curvature. Uspehi Mat. Nauk 21(5 (131)), 59–116 (1966)

    MathSciNet  MATH  Google Scholar 

  • Rozendorn, E.R.: Surfaces of negative curvature. In: Burago, Y.D., Zalgaller, V.A. (eds.) Geometry III, volume 48 of Encyclopaedia of Mathematical Sciences, pp. 87–178. Springer, Berlin (1992)

    Google Scholar 

  • Sauer, R.: Parallelogrammgitter als Modelle pseudosphärischer Flächen. Mathematische Zeitschrift 52(1), 611–622 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  • Schmidt, B.: Minimal energy configurations of strained multi-layers. Calc. Var. Partial Differ. Equ. 30(4), 477–497 (2007a)

    Article  MathSciNet  MATH  Google Scholar 

  • Schmidt, B.: Plate theory for stressed heterogeneous multilayers of finite bending energy. J. Math. Pures Appl. (9) 88(1), 107–122 (2007b)

    Article  MathSciNet  MATH  Google Scholar 

  • Sharon, E., Sahaf, M.: The mechanics of leaf growth on large scales. In: Geitmann, A., Gril, J. (eds.) Plant Biomechanics: From Structure to Function at Multiple Scales, pp. 109–126. Springer, Berlin (2018)

    Chapter  Google Scholar 

  • Sharon, E., Roman, B., Marder, M., Shin, G.-S., Swinney, H.L.: Buckling cascades in free sheets. Nature 419(6907), 579 (2002)

    Article  Google Scholar 

  • Sharon, E., Marder, M., Swinney, H.L.: Leaves, flowers and garbage bags: making waves. Am. Sci. 92(3), 254 (2004)

    Article  Google Scholar 

  • Sharon, E., Roman, B., Swinney, H.L.: Geometrically driven wrinkling observed in free plastic sheets and leaves. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 75(4), 046211 (2007)

    Article  Google Scholar 

  • Stoker, J.J.: Differential Geometry. Wiley Classics Library. Wiley, New York (1989). Reprint of the 1969 original, A Wiley-Interscience Publication

    Google Scholar 

  • Timoshenko, S.: Theory of Plates and Shells. McGraw-Hill, New York (1959)

    MATH  Google Scholar 

  • Tobasco, I.: Curvature-driven wrinkling of thin elastic shells. arXiv preprint arXiv:1906.02153 (2019)

  • Venkataramani, S.C.: Lower bounds for the energy in a crumpled elastic sheet—a minimal ridge. Nonlinearity 17(1), 301 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Vetter, R., Stoop, N., Jenni, T., Wittel, F.K., Herrmann, H.J.: Subdivision shell elements with anisotropic growth. Int. J. Numer. Methods Eng. 95(9), 791–810 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Weinstein, T.: An Introduction to Lorentz Surfaces, volume 22 of De Gruyter Expositions in Mathematics. Walter de Gruyter & Co., Berlin (1996)

    Book  Google Scholar 

  • Wertheim, M., Wertheim, C.: Crochet Coral Reef. Institute for Figuring, Los Angeles, (2015). With contributions by Leslie Dick, Marion Endt-Jones and Anna Mayer and a foreword by Donna Haraway

  • Wissler, Ch.: Globale Tschebyscheff-Netze auf Riemannschen Mannigfaltigkeiten und Fortsetzung von Flächen konstanter negativer Krümmung. Comment. Math. Helv. 47, 348–372 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Wunderlich, W.: Zur Differenzengeometrie der Flächen konstanter negativer Krümmung. Österreich. Akad. Wiss. Math.-Nat. Kl. S.-B. IIa. 160, 39–77 (1951)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Amit Acharya, Andrew Sageman-Furnas, David Glickenstein, Eran Sharon, John Gemmer and Kenneth Yamamoto for many stimulating discussions. SV gratefully acknowledges the hospitality of the Center for Nonlinear Analysis at Carnegie Mellon University, the Oxford Center for Industrial and Applied Math at Oxford University and the Hausdorff Institute at the University of Bonn where portions of this work were carried out. TS was partially supported by a Michael Tabor fellowship from the Graduate Interdisciplinary Program in Applied Mathematics at the University of Arizona. SV was partially supported by the Simons Foundation through Awards 524875 and 560103 and partially supported by the NSF Award DMR-1923922.

Author information

Authors and Affiliations

Authors

Contributions

This article grew out of the Ph.D thesis work of TS, supervised by SV. TS wrote the initial draft. SV revised the draft and incorporated additional material/proofs. Both authors contributed to performing the research reported here. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Shankar C. Venkataramani.

Additional information

Communicated by Eliot Fried.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (mov 1961 KB)

Appendix: Asymptotics of Painlevé III

Appendix: Asymptotics of Painlevé III

We can get more accurate estimates than implied by the bounds in (5.6). For \(\varphi \ll 1,\) the Painlevé III equation (3.18) and the associated boundary conditions reduce to

$$\begin{aligned} \varphi ''(z) + \frac{\varphi '(z)}{z} - \varphi (z) = 0, \quad \varphi (0) = \varphi _0, \quad \varphi '(0) = 0. \end{aligned}$$

The solution is given by \(\varphi (z) = \varphi _0 I_0(z)\), where \(I_0\) is the modified Bessel function of the first kind (Abramowitz and Stegun 1992, §9.6). From the small and large z asymptotics of \(I_0\) (Abramowitz and Stegun 1992, §9.7), we get

$$\begin{aligned} \varphi _{\text {inner}}(z)&= \varphi _0\left( 1 + \frac{z^2}{4} + O\left( z^4 \right) \right) , \text { for } z\ll 1, \\ \varphi _{\text {outer}}(z)&= \varphi _0 \frac{e^{z}}{\sqrt{2\pi z}}\left( 1 + \frac{1}{8z} + O\left( \frac{1}{z^2}\right) \right) , \text {for} z \gg 1. \end{aligned}$$

For the regime \(z \gg 1, \varphi \approx \pi \), we have the weakly damped pendulum equation:

$$\begin{aligned} \varphi ''(z) - \sin \varphi (z) = - \frac{\varphi '(z)}{z} \approx 0, \end{aligned}$$
(A.1)

with asymptotic solutions of the form

$$\begin{aligned} \varphi _{\text {pend}}(z) \approx \pi - A\sin (z^* - z), \end{aligned}$$
(A.2)

for a slowly varying amplitude A that changes over many cycles of the pendulum. We are only interested in the first crossing \(\phi (z^*) = \pi \), so we can assume that A is constant and determine A by matching the large z asymptotics of the Bessel solution with the pendulum solution. From the Bessel solution, we derive initial data for the pendulum equation, fixing the energy level for this conservative system:

$$\begin{aligned} (\varphi _{\text {pend}}(0), \varphi _{\text {pend}}'(0)) \approx \left( \frac{\varphi _0 e^{z}}{\sqrt{2\pi z}}, \frac{\varphi _0 e^{z}}{\sqrt{2\pi z}}\right) = (\delta , \delta ), \end{aligned}$$
(A.3)

where we match at such a point z that \(z \gg 1, \delta \ll 1\). The energy of the pendulum solution is given by

$$\begin{aligned} E = \frac{\varphi '^2}{2} + \cos \varphi \approx 1 + \frac{\delta ^4}{24}, \end{aligned}$$
(A.4)

as \(\cos \varphi \) is the potential and \(\delta \ll 1\). Substituting the data into the energy, we find

$$\begin{aligned} 1 + \frac{\delta ^4}{24}&\approx \frac{1}{2}\left( A'\sin (z^*-z) + A\cos (z^*-z)\right) ^2 + \cos \varphi , \\&\approx \frac{1}{2}\left( A'\sin (z^*-z) + A\cos (z^*-z)\right) ^2 - 1 + \frac{(\pi - \varphi )^2}{2}, \\&\approx \frac{1}{2}\left( A'\sin (z^*-z) + A\cos (z^*-z)\right) ^2 - 1 +\frac{1}{2}A^2\sin ^2(z^*-z), \\&\approx -1 \frac{1}{2}\left[ A'^2\sin ^2(z^*-z) - 2A'A\sin (z^*-z)\cos (z^*-z) + A^2\right] , \end{aligned}$$

which in the case of slowing varying A simplifies to

$$\begin{aligned} A&\approx 2\sqrt{1 + \frac{\delta ^4}{48}}. \end{aligned}$$
Fig. 20
figure 20

Asymptotics using the Pendulum and Bessel approximations in the \(\varphi _0\rightarrow 0\) limit compared to the numerical solution of the Painlevé equation for \(\varphi _0 = \frac{\pi }{100}\). Our interest is in approximating the exact solution well on an interval \([0,z^*]\) where \(z = z^* \approx 9\) is the first instance where \(\varphi (z) = \pi \), depicted by the dashed horizontal line in the figure

We are now equipped with a complete asymptotic description of the solutions to Painlevé III for an initial angle \(\varphi _0\). The description is divided into three regimes: \(z \ll 1\) and \(\varphi _0 \lesssim \varphi \ll \pi \), \(z \gg 1\) and \(\varphi _0 \ll \varphi \lesssim \pi \), and finally \(z\gg 1\) and \(\varphi \approx \pi \):

$$\begin{aligned} \varphi (z) \approx \left\{ \begin{matrix} \varphi _0\left( 1 + \frac{z^2}{4}\right) ,\ z\ll 1\text {~and~} \varphi _0 \lesssim \varphi \ll \pi \\ \varphi _0 \frac{e^{z}}{\sqrt{2\pi z}}\left( 1 + \frac{1}{8z}\right) ,\ z\gg 1\text {~and~} \varphi _0 \ll \varphi \lesssim \pi \\ \pi - 2\sqrt{1 + \frac{e^{4 z}}{192\pi ^2 z^2}}\sin (z^* - z),\ \varphi \approx \pi , z \lesssim z^* \approx -\log (\varphi _0). \end{matrix}\right. \end{aligned}$$
(A.5)

A numerical validation of these asymptotic relations is illustrated in Fig. 20 (we consider \(\varphi _0 = \frac{\pi }{100}\)). Using the expressions in (A.5) instead of the bounds (5.6) gives the optimal constant \(C(\phi ^*) =1\) in Lemma 5.1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shearman, T.L., Venkataramani, S.C. Distributed Branch Points and the Shape of Elastic Surfaces with Constant Negative Curvature. J Nonlinear Sci 31, 13 (2021). https://doi.org/10.1007/s00332-020-09657-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-020-09657-2

Keywords

Mathematics Subject Classification