Abstract
In this article, we study a one-dimensional degenerate fourth-order parabolic equation (a thin-film model) with a source term. We prove existence of generalized weak solutions for the case \(n>0\) and study interface propagation properties like: finite speed propagation and waiting time phenomenon for the case \(1<n<2\). Our analysis is based on applications of global and local energy-entropy a priori estimates. Also, we illustrate some of our main analytical results by numerical simulations.






Similar content being viewed by others
References
Beretta, E., Bertsch, M., Dal Passo, R.: Non-negative solutions of a fourth-order nonlinear degenerate parabolic equation. Arch. Ration. Mech. Anal. 129(2), 175–200 (1995)
Bernis, F.: Finite speed of propagation and continuity of the interface for thin viscous flows. Adv. Differ. Equ. 1(3), 337–368 (1996)
Bernis, F., Friedman, A.: Higher order nonlinear degenerate parabolic equations. J. Differ. Equ. 83(1), 179–206 (1990)
Bernis, F., Peletier, L.A., Williams, S.M.: Source type solutions of a fourth order nonlinear degenerate parabolic equation. Nonlinear Anal. Theory Methods Appl. 18(3), 217–234 (1992)
Bertozzi, A.L., Pugh, M.: The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions. Commun. Pure Appl. Math. 49(2), 85–123 (1996)
Blowey, J.F., King, J.R., Langdon, S.: Small- and waiting-time behavior of the thin-film equation. SIAM J. Appl. Math. 67(6), 1776–1807 (2007)
Carlen, E.A., Ulusoy, S.: An entropy dissipation-entropy estimate for a thin film type equation. Commun. Math. Sci. 3(2), 171–178 (2005)
Carlen, E.A., Ulusoy, S.: Asymptotic equipartition and longtime behavior of solutions of a thin-film equation. J. Differ. Equ. 241(2), 279–292 (2007)
Carrillo, J.A., Toscani, G.: Long-time asymptotics for strong solutions of the thin film equation. Commun. Math. Phys. 225(3), 551–571 (2002)
Chugunova, M., Taranets, R.M.: New dissipated energy for non-negative weak solution of unstable thin-film equations. Commun. Pure Appl. Anal. 10(2), 613–624 (2011)
Chugunova, M., King, J.R., Taranets, R.M.: Uniqueness of the regular waiting-time type solution of the thin film equation. Eur. J. Appl. Math. 23(4), 537–554 (2012)
Dal Passo, R., Garcke, H., Grün, G.: On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions. SIAM J. Math. Anal. (Electron.) 29(2), 321–342 (1998)
Dal Passo, R., Giacomelli, L., Grün, G.: Waiting time phenomenon for thin film equations. Ann. Scuola Norm. Sup. Pisa 30(2), 437–463 (2001)
Èĭdel’man, S.D.: Parabolic Systems. Translated from the Russian by Scripta Technica London. North-Holland Publishing Co., Amsterdam (1969)
Fischer, J.: Optimal lower bounds on asymptotic support propagation rates for the thin-film equation. J. Differ. Equ. 255(10), 3127–3149 (2013)
Fischer, J.: Upper bounds on waiting times for the thin-film equation: the case of weak slippage. Arch. Ration. Mech. Anal. 211(3), 771–818 (2014)
Greenspan, H.P.: On the motion of a small viscous droplet that wets a surface. J. Fluid Mech. 84(1), 125–143 (1978)
Giacomelli, L., Günther, G.: Lower bounds on waiting times for degenerate parabolic equations and systems. Interfaces Free Boundaries 8(1), 111–129 (2006)
Giacomelli, L., Otto, F.: Variatonal formulation for the lubrication approximation of the Hele-Shaw flow. Calc. Var. 13, 377–403 (2001)
Kiradjiev, K.B., Breward, C.J.W., Griffiths, I.M.: Surface-tension-and injection-driven spreading of a thin viscous film. J. Fluid Mech. 861, 765–795 (2018)
Lister, J.R.: Viscous flows down an inclined plane from point and line sources. J. Fluid Mech. 242, 631–653 (1992)
Nirenberg, L.: An extended interpolation inequality. Ann. Scuola Norm. Sup. Pisa 3(20), 733–737 (1966)
Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69(3), 931–980 (1997)
Schwartz, L.W., Michaelides, E.E.: Gravity flow of a viscous liquid down a slope with injection. Phys. fluids 32(10), 2739–2741 (1988)
Shetty, S.A., Cerro, R.L.: Spreading of liquid point sources over inclined solid surfaces. Ind. Eng. Chem. Res. 34(11), 4078–4086 (1995)
Shishkov, A.E., Shchelkov, A.G.: Dynamics of the supports of energy solutions of mixed problems for quasi-linear parabolic equations of arbitrary order. Izv. Math. 62(3), 601–626 (1998)
Slepčev, D.: Linear stability of self-similar solutions of unstable thin-LM equations. Interfaces Free Boundaries 11(3), 375–398 (2009)
Slepčev, D., Pugh, M.: Self-similar blowup of unstable thin-film equations. Indiana Univ. Math. J. 54(6), 1697–1738 (2005)
Stampacchia, G.: Équations elliptiques du second ordre à coefficients discontinus. Séminaire Jean Leray 3, 1–77 (1963–1964)
Taranets, R.: Solvability and global behavior of solutions of the equation of thin films with nonlinear dissipation and absorption. Proc. Inst. Appl. Math. Mech. 7, 192–209 (2002). (Russian)
Taranets, R., Chugunova, M.: Thin film flow dynamics on fiber nets. Commun. Math. Sci. 16(3), 763–775 (2018)
Tudorasku, A.: Lubrication approximation for thin viscous films: asymptotic behavior of non-negative solutions. Commun. Partial Differ. Equ. 32(7), 1147–1172 (2007)
Todorova, D., Thiele, U., Pismen, L.M.: The relation of steady evaporating drops fed by an influx and freely evaporating drops. J. Eng. Math. 73(1), 1730 (2012)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Dejan Slepcev.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Appendix
Appendix
Lemma 2
(Nirenberg 1966) If \(\varOmega \subset \mathbb {R}^N \) is a bounded domain with piecewise-smooth boundary, \(a > 1\), \(b \in (0, a),\ d > 1,\) and \(0 \leqslant k < j,\ k,j \in \mathbb {N}\), then there exist positive constants \(d_1\) and \(d_2\) \((d_2 = 0 \text { if } \varOmega \) is unbounded) depending only on \(\varOmega ,\ d,\ j,\ b,\) and N such that the following inequality is valid for every \(v(x) \in W^{j,d} (\varOmega ) \cap L^b (\varOmega )\):
Note that if \(\varOmega = B(0, R) {\setminus } B(0,r) \), where B(0, x) is ball with the radius x and the origin at 0, then \(d_2 = c (R - r)^{ - \frac{(a - b)N}{a b} -k}\).
Lemma 3
(Stampacchia 1963, Lemme 4.1, p. 19) Let f(x) be nonnegative, non-increasing in \([x_0,+\infty )\) function. Assume that f satisfies
where \(C,\,\alpha ,\, \beta \) are some positive constants. Then
-
(i)
if \(\beta > 1\) we have
$$\begin{aligned} f(y) = 0 \text { for all } y \geqslant x_0 + d, \end{aligned}$$where \(d^{\alpha } = C f^{\beta -1}(x_0) 2^{\frac{\alpha \beta }{\beta -1}}\);
-
(ii)
if \(\beta = 1\) we get
$$\begin{aligned} f(y) \leqslant e^{1- \zeta (y -x_0)}f(x_0) \text { for all } y \geqslant x_0, \end{aligned}$$where \( \zeta = (e\,C)^{- \frac{1}{\alpha }}\);
-
(iii)
if \(\beta < 1\) we obtain
$$\begin{aligned} f(y) \leqslant 2^{\frac{\mu }{1-\beta }} \bigl [C^{\frac{1}{1-\beta }} + (2\, x_0)^{\mu } f(x_0) \bigr ] y^{-\mu } \text { for all } y \geqslant x_0 > 0, \end{aligned}$$where \( \mu = \frac{\alpha }{1- \beta }\).
Lemma 4
(Dal Passo et al. 2001, Lemma 3.1, p. 444; Shishkov and Shchelkov 1998, Lemma 4, p.624) Assume that a given nonnegative, non-decreasing function \(f : ( d,D) \rightarrow \mathbb {R}^1 \) satisfies
where \(C,\,\alpha ,\, \beta , \, \sigma \) are some positive constants such that
Assume further that
Then,
Rights and permissions
About this article
Cite this article
Chugunova, M., Ruan, Y. & Taranets, R. On Qualitative Behaviour of Solutions to a Thin Film Equation with a Source Term. J Nonlinear Sci 31, 9 (2021). https://doi.org/10.1007/s00332-020-09662-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00332-020-09662-5