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Abstract

A nonlinear chain with six-order polynomial on-site potential is used to analyze the evolution

of the total to kinetic energy ratio during development of modulational instability of extended

nonlinear vibrational modes. For the on-site potential of hard-type (soft-type) anharmonicity,

the instability of q = π mode (q = 0 mode) results in the appearance of long-living discrete

breathers (DBs) that gradually radiate their energy and eventually the system approaches thermal

equilibrium with spatially uniform and temporally constant temperature. In the hard-type (soft-

type) anharmonicity case, the total to kinetic energy ratio is minimal (maximal) in the regime of

maximal energy localization by DBs. It is concluded that DBs affect specific heat of the nonlinear

chain and for the case of hard-type (soft-type) anharmonicity they reduce (increase) the specific

heat.
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I. INTRODUCTION

Discrete breathers (DBs) or intrinsic localized modes (ILMs) are spatially localized, large-

amplitude oscillations in a nonlinear defect-free lattice. DBs have been discovered three

decades ago by theoreticians in one-dimensional nonlinear lattices [1–3] and their properties

have been extensively studied, as summarized in [4, 5].

There exist a number of physical systems where the existence of DBs has been proven

experimentally, among them are macroscopic spring-mass chains and arrays of coupled pen-

dula or magnets [6–8], granular crystals [9–16], micro-mechanical cantilever arrays [17–19],

electrical lattices [20–22], nonlinear optical devices [23], Josephson junction arrays [24, 25].

Crystal lattices can also accommodate DBs [26] since discreteness of media and non-

linearity are the two prerequisites for their existence, and interatomic interactions are indeed

anharmonic. A number of successful experimental studies showed the existence of DBs in

crystals by measuring the vibrational spectra. The examples include DBs found in alpha-

uranium [27–29], helium [30], NaI [31, 32], graphite [33], and PbSe [34]. The concentration

of DBs in crystals under thermal equilibrium conditions is relatively low [35].

Contrary to the stable topological lattice defects, e.g. point defects, dislocations or grain

boundaries, a direct experimental observation of DBs in crystals is challenging due to their

nanometeric characteristic size and short (picosecond) lifetime. That is why computer sim-

ulation methods play an important role in helping the study of DB properties in various

crystals. Earlier, the existence of DBs in strained graphene and graphane (fully hydro-

genated graphene) has been confirmed with the help of ab initio simulations [36, 37]. Such

first-principle simulations impose high computational demands and at present their appli-

cation is limited to two-dimensional (2D) structures supporting highly localized DBs that

can be analyzed in relatively small computational cells. DBs in 3D crystals are studied by

means of classical molecular dynamics (MD) methods. For the first time, this method was

successfully applied to the study of gap DBs in alkali halide NaI crystal [38] and this study

was continued in [39, 40]. Using molecular dynamics, DBs have been found in monoatomic

Morse crystals [41, 42], covalent crystals Si, Ge and diamond [43, 44], pure metals [45–53],

ordered alloys [54–57], carbon and hydrocarbon nanomaterials [58–70], boron nitride [71],

and proteins [72–75]. Essential limitation of any MD model is the choice of the interatomic

potentials which largely determines the reliability of the obtained results [69].
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An alternative approach to investigation of the role played by DBs is to predict how they

could alter macroscopic properties of crystals depending on the ambient temperature [76].

Since DBs are nonlinear vibrational modes, their excitation is expected to be triggered by

raising the temperature above a certain threshold value [77]. In several experimental works,

the effect of DBs on macroscopic properties of crystals has been discussed. In particular,

anomalies in thermal expansion [27] and heat capacity [28] of alpha-uranium were attributed

to the excitation of DBs at high temperatures. At the same time, it was shown numerically

that DBs are responsible for the transition from ballistic to normal thermal conductivity in

a nonlinear chain [78, 79].

Identification of thermally excited DBs in lattices requires application of special proce-

dures [40, 77, 80–85]. DBs, as dynamical lattice defects, interact with phonons [86], and

they can be distinguished in lattices during non-equilibrium processes, e.g., by absorbing

running phonon waves at the boundaries of heated lattice [74, 78, 87–97]. Here we choose an

alternative approach related to modulational instability of particular delocalized vibrational

modes. Such instabilities lead to energy localization in the form of long-living chaotic DBs

and subsequent transition to thermal equilibrium [22, 98–107]. In the course of this tran-

sition of a nonlinear chain, the local temperature and the specific heat can be calculated.

Here, we demonstrate that the specific heat of the crystal containing DBs is different (smaller

for the hard-type anharmonicity and larger for the soft-type anharmonicity) from the one

measured under thermal equilibrium. This feature can be used as indicator of the activation

of DBs during increasing the crystal’s temperature and measuring its specific heat at the

same time. The specific heat and the anomaly of thermal conductivity in the presence of

DBs can be linked also to the definition of the effective temperature related to the additional

degrees of freedom of out-of-equilibrium systems.

Discrete breathers can be divided into two large groups according to the type of anhar-

monicity. DBs with a soft (hard) type of anharmonicity demonstrate a decrease (increase) in

the frequency of oscillations with amplitude. Obviously, discrete breathers with a soft type

of anharmonicity can exist only in crystals with a gap in the phonon spectrum; examples are

NaI [31, 32, 38–40], graphane [37], strained graphene [36, 68], ordered alloys [54–57]. DBs

with the hard-type anharmonicity have been reported in pure metals [27–29, 45–53] and

covalent crystals [43, 44]. It seems important to study the effect of DBs on the macroscopic

properties for both groups of crystals. In our previous work [108], the Fermi–Pasta–Ulam
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chain was considered, where the absence of an on-site potential made it possible to study

the effect of DBs on thermal expansion and elastic constants. Nevertheless, within the

framework of that model, only hard-type anharmonicity DBs could be analyzed due to the

absence of a gap in the phonon spectrum. Here we construct a model with the ability to

consider both types of anharmonicity, introducing a six-order polynomial on-site potential.

In this work, we discuss this methodology and provide computational assessment to

evaluate the contribution of DBs in the change of the total to kinetic energy ratio, which is

related to the specific heat. After description of the model and simulation procedure provided

in Sec. II, the modulational instability analysis is performed in Sec. III for the chains with

soft- and hard-type anharmonicity. Then the simulation results on the development of

modulational instability of the zone boundary mode (q = π) are presented in Sec. IV for the

hard-type anharmonicity. The modulational instability of Γ-point mode (q = 0) is studied

in Sec. V for the soft-type anharmonicity. Properties of discrete breathers are then analyzed

in Sec. VI to rationalize results of the performed simulations. Summary and conclusions are

presented in Sec. VII.

II. THE MODEL AND SIMULATION SETUP

We consider a 1D chain of particles having mass m (see Fig. 1) whose Hamiltonian is

defined by

H = K + P =
∑

n

mu̇2
n

2
+
∑

n

[s

2
(un+1 − un)

2 + U(un)
]

, (1)

where K is the kinetic energy, P is the potential energy, un is the displacement of the nth

particle from its equilibrium position and u̇n is its velocity (overdot means derivative with

respect to time t). The particles are harmonically coupled to their nearest neighbors by the

elastic bonds with stiffness s. For the on-site potential, we take

U(ξ) = kξ2 + αξ4 + βξ6, (2)

where k is the coefficient in front of the harmonic term, while the coefficients α and β define

the contributions from the quartic and six-order terms, respectively. This model has been

considered in [109] for solving a different problem. Without loss in generality we set bond

length equal to unity. By a proper choice of the units of time and energy we can set m = 1

and s = 1, respectively.
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Figure 1: (a) Chain of harmonically coupled, unit mass point-like particles interacting with the

six-order polynomial on-site potential. (b) On-site potential Eq. (2) for the cases of soft-type (blue

solid line) and hard-type (red dashed line) anharmonicity. Potential parameters are k = 1/2,

α = ±1/24, and β = 1/720, where positive and negative α corresponds to the hard- and soft-type

anharmonicity, respectively. The soft-type potential has inflection points at ξ∗i = ±
√

6± 6/
√
3,

i.e., ξ∗1,2 ≈ ±1.59 and ξ∗3,4 ≈ ±3.08 (indicated by dots).

As mentioned in the Introduction, it is important to analyze the effect of DBs on macro-

scopic properties of the lattices for the cases of soft- and hard-type anharmonicity. In the

framework of the present work, this can be done by choosing the following parameters for

the on-site potential (2): k = 1/2, α = ±1/24, and β = 1/720 [see Fig. 1(b)]. Note that for

α > 0 we have the on-site potential with the hard-type anharmonicity and for α < 0 the on-

site potential features the soft-type anharmonicity for not very large vibration amplitudes.

The value of the parameter β is such that the on-site potential for the soft-type anharmonic-

ity is the Taylor series expansion of the Frenkel–Kontorova sinusoidal potential, which will

simplify the analysis of DBs in Sec. VIB. The on-site potential is shown in Fig. 1(b) by the

blue solid and red dashed lines for the cases of soft- and hard-type anharmonicity. It can be

seen that in both cases the potential has single well. The soft-type potential has inflection

points at ξ∗i = ±
√

6± 6/
√
3, i.e., ξ∗1,2 ≈ ±1.59 and ξ∗3,4 ≈ ±3.08 (indicated by dots). If

particle displacements exceed the inflection points ξ∗3,4 then even for negative α the on-site

potential will become effectively hard due to the six-order term, which is introduced in order

to prevent bond breaking at large vibration amplitudes.
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The equations of motion that stem from Eqs. (1) and (2) are

mün = s
(

un−1 − 2un + un+1

)

− 2kun − 4αu3
n − 6βu5

n. (3)

These equations are integrated numerically using the Störmer method [110] of the sixth

order with the time step τ = 10−3. This symplectic method is very efficient in solving the

Cauchy problem for a set of second-order ordinary differential equations not containing u̇n.

Symplectic integrators are popular because they allow the total energy of the system to be

controlled with high precision [111–113]. In our simulations, the total energy is conserved

with a relative error not exceeding 10−5 during the entire numerical run.

In the case of small amplitude vibrations, the nonlinear terms can be neglected and the

solutions of the linearized equation are the normal modes un ∼ exp[i(qn − ωqt)] with the

wave number q and frequency ωq. These modes obey the following dispersion relation:

ω2
q =

2

m
[k + s (1− cos q)] . (4)

The considered chain supports the small-amplitude running waves (phonons) with frequen-

cies within the band from ωmin = 1 for q = 0 to ωmax =
√
5 ≈ 2.236 for q = π.

In the case of hard-type anharmonicity (α = 1/24), the zone-boundary mode with q = π

and the amplitude A,

un = A sin(πn− ωmaxt), (5)

is excited in the chain of N = 1000 particles at t = 0. For the chain with soft-type

anharmonicity (α = −1/24) the Γ-point mode with q = 0 and the amplitude A,

un = A sin(ωmint), (6)

is initially excited.

Note that the modes (5) and (6) are lattice symmetry dictated exact solutions to the

equations of motion regardless the type of interaction potential and for arbitrary amplitude.

There exist other modes with short periods having the same properties [114–116]. However

those modes, at least for small amplitudes, typically have frequencies within the phonon

band and the development of their instability does not produce long-lived chaotic DBs.

If A is not too small, the modes (5) and (6) are modulationally unstable. Initially the

energy is evenly shared between all the particles. Development of the instability results in
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energy localization which can be monitored by calculating the localization parameter

L =

∑

e2n
(

∑

en

)2
, (7)

where

en =
mu̇2

n

2
+

s

4

(

un − un−1

)2
+

s

4

(

un+1 − un

)2
+ U(un) (8)

is the energy of the nth particle.

In our study, the energies of particles en are chosen as observables, as in a number of

other studies on DBs [82, 117, 118]. The use of such local observables is justified for the high

energy regime when they are constants of motion. On the other hand, in the low energy

regimes, energies of normal modes can be used as observables, as they become constants

of motion [119]. In the present study, it seems that we have an intermediate case which

cannot be classified as the low energy regime because, as it will be seen below, chaotic DBs

emerging as a result of modulational instability, are highly localized and have relatively large

amplitudes. This is why the local observables en seem to be informative in our study.

As a measure of temperature, the averaged kinetic energy per atom,

K̄ =
1

N

∑

n

mu̇2
n

2
, (9)

will be used. In fact, the temperature of a one-dimensional lattice is T = 2K̄/kB, where

kB = 8.617× 10−5 eVK−1 is the Boltzmann constant.

Heat capacity of the whole chain is defined as

C = lim
∆T→0

∆H

∆T
, (10)

where ∆H is the portion of energy given to the system and ∆T is the corresponding increase

of temperature. Specific heat is defined as the heat capacity per unit mass or per particle.

Since periodic boundary conditions are used in this study, and thermal expansion of the

chain is not allowed, we evaluate the specific heat at constant volume.

The definition (10) cannot be used in our simulations performed at constant total energy

H . An alternative way to characterize heat capacity is to consider the total energy to

kinetic energy ratio for the chain [120, 121]. In linear chains the total energy is equally

shared between the kinetic and potential energies so that ∆H = 2∆K and C = 2, while
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the portion of the kinetic energy can differ from 1/2 in a nonlinear chain. In this study the

specific heat of the chain at constant volume is characterized by the ratio

cV =
H̄

K̄
, (11)

where H̄ and K̄ are the total energy and the kinetic energy of the chain per atom, respec-

tively.

In the following section, the time evolution of cV will be calculated for the chain during

the development of modulational instability. The values of cV in the regime when energy is

localized by DBs will be compared to that in thermal equilibrium.

III. MODULATIONAL INSTABILITY

Several analytical approaches have been developed for the analysis of modulational insta-

bilities in lattices [101, 122]. Here we follow the one proposed by Kosevich and Lepri [101].

We first derive the wavenumber of the modulation wave with the largest growth rate for

the Γ-point mode and zone-boundary mode in the cases of soft-type and hard-type anhar-

monicity, respectively, and then compare the analytical results to the results of numerical

simulations.

A. Soft-type anharmonicity

Let us analyze the modulational instability of the Γ-point mode (6) with the amplitude

A. Long-wavelength approximation of Eq. (3) reads (the lattice spacing is equal to 1 in our

model)

mutt = suxx − 2ku− 4αu3, (12)

where the quintic term is omitted assuming that A ∼ 1 and taking into account that β ≪ |α|.
We look for the solution to Eq. (12) in the form

u(x, t) = A sin(ωmint) + ǫ(t) cos(Qx), (13)

where the first term in the right-hand side is the Γ-point mode and the second term is a small

perturbation (ǫ ≪ A) in the form of standing wave with the wavenumber Q. Substituting
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Eq. (13) into Eq. (12) one finds the frequency of the Γ-point mode as a function of amplitude,

ω2
min =

2k + 3αA2

m
, (14)

and the linearized equation for the evolution of the perturbative term,

mǫ̈+ [sQ2 + 2k + 12αA2 sin2(ωmint)]ǫ = 0. (15)

This result assumes the weakness of nonresonant interaction between the mode with fun-

damental frequency and its third harmonic, which allows to substitute sin3(ωmint) with

(3/4) sin(ωmint).

The solution of Eq. (15) is taken in the form [101]

ǫ = [a cos(ωmint) + b sin(ωmint)]e
pt, (16)

where p is the instability growth rate. Substitution of Eq. (16) into Eq. (15) yields

m2p4 + 2m(sQ2 + 4k + 9αA2)p2 + sQ2(sQ2 + 6αA2) = 0, (17)

where again the assumption of weak interaction of the fundamental harmonic with the third

harmonic was used. Physically meaningful root of Eq. (17) for the parameters used in this

study is

p =

√

−2 +
3

8
A2 −Q2 +

√

4− 3

2
A2 +

9

64
A4 +

(

4− 1

2
A2

)

Q2. (18)

Condition dp/dQ = 0 gives the wavenumber corresponding to the maximal growth rate,

Qmax =
A√
8

√

8− 5A4/4

8− A2
, (19)

which for small A can be simplified to

Qmax =
A√
8
. (20)

Corresponding maximal growth rate for small A is

pmax =
A2

16
. (21)
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B. Hard-type anharmonicity

Following the work [101], for the analysis of instability of the zone-boundary mode we

introduce new variable fn = (−1)nun and rewrite Eq. (3) in the form

mf̈n = −s(fn−1 − 2fn + fn+1)− (4s+ 2k)fn − 4αf 3
n − 6βf 5

n. (22)

Assuming that fn varies slowly with n we substitute the last equation with the long-wave

approximation

mftt = −sfxx − (4s+ 2k)f − 4αf 3, (23)

where the quintic term is omitted since β ≪ α.

The following analysis is very similar to the case of the soft-type nonlinearity. Looking

for the solution to Eq. (23) in the form

f(x, t) = A sin(ωmaxt) + ǫ(t) cos(Qx), (24)

one finds the frequency of the zone boundary mode as a function of amplitude,

ω2
max =

4s+ 2k + 3αA2

m
, (25)

and the linearized equation for the evolution of the modulation wave,

mǫ̈+ [−sQ2 + 4s+ 2k + 12αA2 sin2(ωmaxt)]ǫ = 0. (26)

Substitution of Eq. (16) into Eq. (26) yields

m2p4 + 2m(−sQ2 + 8s+ 4k + 9αA2)p2 + sQ2(sQ2 − 6αA2) = 0. (27)

Physically meaningful root of Eq. (27) for the parameters used in this study is

p =

√

Q2 − 3

8
A2 − 10 +

√

100 +
15

2
A2 +

9

64
A4 −

(

20 +
1

2
A2

)

Q2. (28)

The wavenumber corresponding to the maximal growth rate is

Qmax =
√
5A

√

1 + A2/32

40 + A2
, (29)

which for small A simplifies to

Qmax =
A√
8
. (30)

Corresponding maximal growth rate for small A is

pmax =
A2

36
. (31)

Interestingly, Eqs. (20) and (30) coincide for Γ-point and zone-boundary modes.
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Figure 2: Wavenumber of the modulation wave with the highest grows rate as a function of

amplitude for (a) Γ-point mode and (b) zone-boundary mode in the cases of soft-type and hard-type

anharmonicity, respectively. Numerical data are presented by dots. Black solid lines correspond to

Eqs. (19) and (29), red dashed lines correspond to Eqs. (20) and (30), in (a) and (b), respectively.

C. Numerical results

After excitation of a Γ-point or zone-boundary mode with the amplitude A we calculate

energy of the particles, en, according to Eq. (8). Initially, all particles have equal energy, but

situation changes with the development of instability. We find the particles with the minimal

and maximal energies, emin, emax, and at the time when (emax − emin)/(emax + emin) > 0.01

the Fourier transform of en is performed in order to find the wavenumber of the modulation

wave, Q.

In Fig. 2, the numerical result is presented by dots, showing the wavenumber of the

modulation wave as a function of mode amplitude for (a) Γ-point and (b) zone-boundary

mode, in the cases of the soft- and hard-type anharmonicity, respectively. Black solid lines

in (a) and (b) are plotted with the use of Eqs. (19) and (29), respectively. Red dashed lines

in (a) and (b) correspond to Eqs. (20) and (30), respectively, and, as it has been mentioned,

they actually coincide. As expected, the analytical expressions fit the numerical results very

well for the small amplitudes. More complicated expressions (19) and (29) give a better

result for small amplitudes, but for increasing amplitudes they deviate from the numerical

results faster than the simplified expressions (20) and (30).
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Figure 3: Localization parameter vs time for various amplitudes A of the initially excited zone-

boundary mode (α = 1/24, hard-type anharmonicity). For all cases at t = 0, L = 1/N =

10−3. Modulational instability results in increase of L due to energy localization on DBs. Then

L decreases because DBs gradually radiate energy and eventually the system reaches thermal

equilibrium with a small value of L.

In the following, for the soft-type (hard-type) anharmonicity the range of amplitudes

from 0.35 to 0.6 (from 0.8 to 1.2) will be analyzed. Even in these ranges of amplitudes the

analytical estimation provides adequate results.

IV. CHAOTIC DISCRETE BREATHERS. HARD-TYPE ANHARMONICITY

We take α = 1/24 in the on-site potential (2) and excite in the chain the zone-boundary

mode (5) considering various amplitudes A. While integrating the equations of motion

(3), we monitor the change in the localization parameter L, Eq. (7), and specific heat cV ,

Eq. (11).

Localization parameter as a function of time is presented in Fig. 3 for various values of

A. At t = 0, all curves start from the minimal possible value of the localization parameter

that is L = 1/N = 10−3. The development of modulational instability results in energy

localization due to the formation of DBs and this leads to an increase in the localization

parameter. DBs slowly radiate their energy and thus, the localization parameter gradually

decreases and in the end, when the system reaches the state of thermal equilibrium, L

oscillates near the small value of 2× 10−3.

Distribution of energy over the chain at the time when the localization parameter is
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Figure 4: Total energies of particles in the chain at the time when the localization parameter reaches

its maximum for various amplitudes of the initially excited zone-boundary mode, as indicated for

each panel. Results for α = 1/24 (hard-type anharmonicity).

maximal is shown in Fig. 4 for various mode amplitudes from A = 0.8 to A = 1.2. One

can see the sets of highly localized DBs. Of course, the model considered here does not

support compact DBs described by Eleftheriou et al. for the anharmonic chain [123], or

DBs with superexponential tails explored by Dey et al. [124], but supports common DBs

with exponentially localized tails. The tail solution can be obtained by substituting un(t) =

dn sinωt into linearized equation of motion (3). The resulting characteristic equation has

two roots, d1 = 1/d2 = (−κ +
√
κ2 − 4)/2, where κ = (mω2 − 2s − 2k)/s. The solution is

valid for un ≪ 1.

In Fig. 5, we plot (a) the number of DBs and (b) the average energy of DBs as functions

of the zone-boundary mode amplitude at the time when L is maximal. When calculating the

number of DBs only the particles with en > 10 were taken into consideration. This cut-off

value corresponds to about 10% of the averaged DB energy. Doubling or even tripling the

cut-off energy has very little effect on the result. It can be seen that the data shown in

Fig. 5 has some noise. The noise could be reduced by averaging over realizations, but we

did not do that in this study. It follows from the plots in Fig. 5 that NDB increases linearly

with A nearly two times within the studied range of amplitudes, while EDB increases with

A very slowly.

Our main result is shown in Fig. 6, where the time-dependence of specific heat is plotted
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Figure 5: (a) Number of discrete breathers and (b) average energy of discrete breathers at the time

when localization parameter is maximal, as functions of the zone-boundary mode amplitude.
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Figure 6: Specific heat as a function of time for various amplitudes of the initially excited zone-

boundary mode. Specific heat is minimal when DBs are in the system and it increases while system

approaches thermal equilibrium. Results for α = 1/24 (hard-type anharmonicity).

for various mode amplitudes. From comparison of Fig. 3 and Fig. 6, it can be seen that the

specific heat is minimal when the localization parameter is maximal. During the transition

to thermal equilibrium, the specific heat increases. From this, we conclude that the DBs

reduce the specific heat of the chain with hard-type anharmonicity.

Thus, we have two distinct regimes: the regime with high localization parameter L, when

chaotic DBs share almost all the energy of the system, and the regime with small localization

parameter, when almost all the energy belongs to phonons. In the phonon regime, as follows
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Figure 7: The same as in Fig. 3 but for the soft-type anharmonicity (α = −1/24).

from Fig. 6, cV oscillates near a constant value which decreases with increase in the total

energy of the system, the latter is higher for larger A. In the regime of chaotic DBs the

contribution to cV from phonons is small and in the regime of thermal equilibrium, the

contribution from DBs is small.

V. CHAOTIC DISCRETE BREATHERS. SOFT-TYPE ANHARMONICITY

Now, we take α = −1/24 in the on-site potential (2) and excite in the chain the Γ-point

mode (6) considering various amplitudes A. Again, while integrating the equations of motion

(3), we monitor the change in the localization parameter L, Eq. (7), and specific heat cV ,

Eq. (11).

Localization parameter as a function of time is presented in Fig. 7 for various values

of A. Similar to the case of the hard-type anharmonicity, at t = 0, all curves start from

the minimal possible value of the localization parameter that is L = 1/N = 10−3. The

development of modulational instability results in energy localization due to the formation

of DBs, and this leads to an increase in the localization parameter. DBs slowly radiate their

energy, and thus the localization parameter gradually decreases and in the end, when the

system reaches the state of thermal equilibrium, L oscillates near the small value of 2×10−3.

Distribution of energy over the chain at the time when localization parameter is maximal

is shown in Fig. 8 for various mode amplitudes from A = 0.35 to A = 0.6. One can see the

sets of DBs localized on a few particles (they are not as sharply localized as in the case of

hard-type anharmonicity). In Fig. 9, we plot (a) the number of DBs and (b) the average
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Figure 8: Total energies of particles in the chain at the time when the localization parameter

reaches its maximum for various amplitudes of the initially excited Γ-point mode, as indicated for

each panel. Results for α = −1/24 (soft-type anharmonicity).
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Figure 9: (a) Number of discrete breathers and (b) Average energy of discrete breathers at the

time when localization parameter is maximal, as the functions of the Γ-point mode amplitude.

energy of DBs as functions of the Γ-point mode amplitude at the time when L is maximal.

In this case the cut-off energy for calculation of the number of DBs is set to en < 0.3, which

is about 10% of the averaged DB energy. It follows from the plots that NDB increases linearly

with A nearly two times within the studied range of amplitudes, while EDB increases with A
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Figure 10: The same as in Fig. 6, but for the soft-type anharmonicity (α = −1/24). Contrary to

the case of the hard-type anharmonicity, here specific heat is maximal when DBs are in the system.

more slowly. Our main result is shown in Fig. 10, where the time-dependence of the specific

heat is plotted for various mode amplitudes. From comparison of Fig. 7 and Fig. 10, it

can be seen that the specific heat is maximal when the localization parameter is maximal.

During the transition to thermal equilibrium, the specific heat decreases. From this, we

conclude that the DBs increase the specific heat of the chain with soft-type anharmonicity.

In contrast to the case of the hard-type anharmonicity, here, in the phonon regime, cV

oscillates near a constant value which increases with increase in the total energy of the

system.

VI. PROPERTIES OF DISCRETE BREATHERS

Approximate solutions for DBs in the chain (3) have been derived in [109]. However, the

solution reported for the hard-type anharmonicity cannot be used here because it is valid

only for relatively wide DBs but in our simulations very sharp DBs are formed as a result

of modulational instability, see Fig. 4. In the following we will give another approximate

solution, which is valid for very sharp DBs in the case of hard-type anharmonicity. On the

other hand, in the case of soft-type anharmonicity the emerging DBs are not very sharp,

see Fig. 8, and the solution reported in [109] gives a reasonable accuracy. Below we will

reproduce that solution for the convenience of the reader.
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A. Hard-type anharmonicity

For a very sharp DB localized on nth particle, we assume that un−1 = un+1 = 0. Hence,

Eq. (3) becomes

ün + a1un + a3u
3
n + a5u

5
n = 0, (32)

where

a1 =
2(s+ k)

m
, a3 =

4α

m
and a5 =

6β

m
.

The exact periodic solution to this equation has been reported, e.g., in [125] in the form

un(t) =
ADBcn(P,M)

√

cn2(P,M) +
√

6q
1

q
2

sn2(P,M)dn2(P,M)

, (33)

where cn, sn and dn are the Jacobi elliptic functions, ADB is the DB amplitude and

q1 = a1 + a3A
2
DB + a5A

4
DB, (34)

q2 = 6a1 + 3a3A
2
DB + 2a5A

4
DB, (35)

q3 = 4a1 + 3a3A
2
DB + 2a5A

4
DB, (36)

P =
(q1q2

6

)
1

4

t, (37)

M =
1

2
− q3

4

√

3

2q1q2
. (38)

The red solid line in Fig. 11(a) shows the relation between the DB frequency (fDB) and

the DB amplitude (ADB) obtained from the analytical solution (33) of Eq. (32). Numerically

exact result for the on-site DB obtained starting from the anticontinuous limit as described

in the work [126] is shown by the blue dashed line. Here we also plot the numerical results

(scattered dots) for the chaotic DBs emerged in the simulations of the modulational insta-

bility of the zone-boundary mode with A = 1.0, see Fig. 4. It can be seen that the results for

the chaotic DBs are very close to the solution obtained with the machine accuracy and the

analytical solution (33) underestimates DB frequency by approximately 5%. This difference

between the numerical and analytical results can be attributed to the assumption, that the

DB is localized on single particle, used in calculating the analytical solution. This assump-

tion is responsible for underestimation of the rigidity of the actual breather. As the DB

amplitude is increased, the degree of DB localization also increases and thus, the simulation

results become closer to the analytical solution at higher amplitudes.
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Figure 11: The DB Frequency fDB as a function of the DB amplitude ADB, for (a) hard-type

anharmonicity and (b) soft-type anharmonicity. The red solid line in (a) is for the analytical

solution (33), while the red solid line in (b) is for the solution (41). Blue dashed lines in (a) and

(b) show the numerically exact solutions for on-site DBs. Scattered dots in (a) and (b) are for the

chaotic breathers emerged as a result of the modulational instability of the zone-boundary mode

with the amplitude A = 1.0 and the Γ-point mode with A = 0.6, respectively.

B. Soft-type anharmonicity

In the case of soft-type anharmonicity, for not very large displacements, Eq. (3) can be

approximated by the Frenkel-Kontorova model [127]

mün = s(un−1 − 2un + un+1)− sin(un), (39)

which reduces to the sine-Gordon equation in the continuum limit (s → ∞),

utt − uxx + sin u = 0. (40)

Then the well-known moving breather solution of Eq. (40) can be written in the discrete

form to give an approximate solution to Eq. (39) as follows

un(t) = 4 arctan
η cos[ζωDB(t− vDBn)]

ωDB cosh[ζη(n− vDBt)]
, (41)

where

η =
√

1− ω2
DB, ζ =

1
√

1− v2DB

. (42)
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Amplitude of standing DB (vDB = 0) is

ADB = 4 arctan
η

ωDB

. (43)

The red solid line in Fig. 11(b) shows the relation between the DB frequency fDB =

ωDB/2π and the DB amplitude ADB for soft-type anharmonicity obtained from the analytical

solution (43). Blue dashed line gives the frequency-amplitude relation obtained with the

machine accuracy for the on-site DB [126]. Accuracy of the analytical solution (43) is much

better than in the case of the hard-type of anharmonicity, and, in contrast to that case, here

the accuracy increases with decreasing amplitude. Numerical results for the chaotic DBs

(scattered dots) obtained from the simulation of the modulational instability of the Γ-point

mode with the amplitude A = 0.6 are also shown. The analytical solution (43) is in a good

agreement with the simulation results (within 1.5%).

VII. CONCLUSIONS

In the present study, the effect of DBs on the total to kinetic energy ratio of the chain is

discussed and related to the specific heat of a nonlinear chain. Chaotic DBs arise in the chain

as a result of the modulational instability of particular extended vibrational modes, namely,

the zone-boundary mode (q = π) for the case of hard-type anharmonicity and the Γ-point

mode (q = 0) for the case of soft-type anharmonicity. The analytical results presented in

Sec. VI prove that the localized modes observed in the system are DBs.

As it can be seen in Fig. 6, when DBs are excited in the chain with the hard-type

anharmonicity, the specific heat is about 10% lower as compared to thermal equilibrium.

For the soft-type anharmonicity (see Fig. 10), the specific heat reduces by about 2% during

the transition from the regime with DBs to thermal equilibrium. This means that DBs reduce

(increase) the heat capacity of the nonlinear chain with hard-type (soft-type) anharmonicity.

The results obtained here have a very simple physical interpretation. DBs in the hard-type

anharmonicity chain have frequencies above the phonon spectrum, so that their excitation

would increase the velocities of particles and hence the kinetic energy (or temperature) of

the system. In this situation, DBs are responsible for a decrease of heat capacity because

temperature or kinetic energy is in the denominator of Eq. (10) or Eq. (11). For the chain

with the soft-type anharmonicity the effect of DBs on heat capacity is opposite because DBs
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have frequencies below the phonon spectrum and their appearance in the system will lead

to a decrease in particle velocities and kinetic energy (or temperature) of the system.

In this study, chaotic DBs emerged as a result of instability of the zone-boundary mode

were analyzed. No doubt that the conclusions made are valid for thermally populated DBs in

the regime of thermal equilibrium as well. On the other hand, the effect will be considerably

weaker, since the portion of energy carried by DBs in thermal equilibrium is much smaller

than in the far-from-equilibrium case considered here.

Having this in mind, one can deduce that the heat capacity of the crystals having a gap in

the phonon spectrum and supporting soft-type anharmonicity DBs (e.g., NaI [31, 32, 38–40],

ordered alloys [54–57], and graphane [37]) should increase due to the excitation of DBs. For

the crystals without a gap in the phonon spectrum (e.g., pure metals [45, 46, 49–52] and

covalent crystals [43, 44]) only hard-type anharmonicity DBs can exist and their excitation

will reduce heat capacity.

Note that in the experimental work [28] an increase of heat capacity of alpha-uranium at

high temperatures was related to the contribution from DBs. Apparently this is a misleading

interpretation since DBs in alpha-uranium are of the hard-type anharmonicity [50] and they

can only reduce the heat capacity.

In future studies, it is planned to analyze the effect of DBs on other macroscopic properties

of nonlinear chains and crystal lattices, e.g., on the elastic constants and thermal expansion.

These properties could not be analyzed in the present study since the model with the on-

site potential was considered. The on-site potential precludes the free thermal expansion of

the chain and alters the mechanical response of the chain to external loads. On the other

hand, models without on-site potential support only hard-type anharmonicity DBs and they

cannot be used to study the effect of the type of anharmonicity, which was addressed here.

Overall, the works devoted to the effect of DBs on macroscopic properties of nonlinear lat-

tices will suggest the ways of indirect detection of DBs in crystals by measuring macroscopic

properties sensitive to the presence of DBs.
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