Skip to main content
Log in

Doubly Localized Two-Dimensional Rogue Waves in the Davey–Stewartson I Equation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Doubly localized two-dimensional rogue waves for the Davey–Stewartson I equation in the background of dark solitons or a constant, are investigated by employing the Kadomtsev–Petviashvili hierarchy reduction method in conjunction with the Hirota’s bilinear technique. These two-dimensional rogue waves, described by semi-rational type solutions, illustrate the resonant collisions between lumps or line rogue waves and dark solitons. Due to the resonant collisions, the line rogue waves and lumps in these semi-rational solutions become doubly localized in two-dimensional space and in time. Thus, they are called line segment rogue waves or lump-typed rogue waves. These waves arise from the background of dark solitons, then exist in the background of dark solitons for a very short period of time, and finally completely decay back to the background of dark solitons. In particular circumstances which are characterized by special parametric conditions, the dark solitons in the long wave component of the DSI equation can degenerate into the constant background. In this case, the rogue waves appear and disappear in a constant background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Pelinovsky, E., Kharif, C.: Extreme Ocean Waves. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  • Kharif, C., Pelinovsky, E., Slunyaev, A.: Rogue Waves in the Ocean. Springer, Berlin (2009)

    MATH  Google Scholar 

  • Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 6 (2009)

    MATH  Google Scholar 

  • Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054 (2007)

    Article  Google Scholar 

  • Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    Article  Google Scholar 

  • Chabchoub, A., Hoffmann, N.P., Onorato, M., Slunyaev, A., Pelinovsky, E., Akhmediev, N.: Observation of a hierarchy of up to fifth-order rogue waves in a water tank. Phys. Rev. E 86, 056601 (2012)

    Article  Google Scholar 

  • Onorato, M., Residori, S., Bortolozzo, U., Montina, A., Arecchi, F.T.: Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528, 47–89 (2013)

    Article  MathSciNet  Google Scholar 

  • Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790–795 (2010)

    Article  Google Scholar 

  • Lecaplain, C., Grelu, Ph, Soto-Crespo, J.M., Akhmediev, N.: Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser. Phys. Rev. Lett. 108, 233901 (2012)

    Article  Google Scholar 

  • Birkholz, S., Nibbering, E.T.J., Bre, C., Skupin, S., Demircan, A., Genty, G., Steinmeyer, G.: Spatiotemporal rogue events in optical multiple filamentation. Phys. Rev. Lett. 111, 243903 (2013)

    Article  Google Scholar 

  • Bailung, H., Sharma, S.K., Nakamura, Y.: Observation of Peregrine solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 107, 255005 (2011)

    Article  Google Scholar 

  • Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. B 25, 16–43 (1983)

    Article  MATH  Google Scholar 

  • Guo, B., Ling, L., Liu, Q.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

    Article  Google Scholar 

  • Ohta, Y., Yang, J.: General high-order roguewaves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. Lond. A 468, 1716–1740 (2012)

    MathSciNet  MATH  Google Scholar 

  • He, J., Zhang, H., Wang, L., Porsezian, K., Fokas, A.S.: Generating mechanism for higher order rogue waves. Phys. Rev. E 87, 052914 (2013)

    Article  Google Scholar 

  • Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80, 026601 (2009)

    Article  Google Scholar 

  • Ling, L., Guo, B., Zhao, L.: High-order rogue waves in vector nonlinear Schrödinger equations. Phys. Rev. E 89, 041201 (2014)

    Article  Google Scholar 

  • Zhao, L.C., Guo, B., Ling, L.: Higher-order rogue wave solutions for the coupled nonlinear Schrödinger equations-II. J. Math. Phys. 57, 043508 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Baronio, F., Degasperis, A., Conforti, M., Wabnitz, S.: Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves. Phys. Rev. Lett. 109, 044102 (2012)

    Article  Google Scholar 

  • Baronio, F., Conforti, M., Degasperis, A., Lombardo, S., Onorato, M., Wabnitz, S.: Vector rogue waves and baseband modulation instability in the defocusing regime. Phys. Rev. Lett. 113, 034101 (2014)

    Article  Google Scholar 

  • Chen, S., Mihalache, D.: Vector rogue waves in the Manakov system: diversity and compossibility. J. Phys. A: Math. Theor. 48, 215202 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, G., Yan, Z.: Three-component nonlinear Schrödinger equations: modulational instability, \(N\)th-order vector rational and semi-rational rogue waves and dynamics. Commun Nonlinear Sci Numer Simulat 62, 117–133 (2018)

    Article  MATH  Google Scholar 

  • Bilman, D., Miller, P.D.: A robust inverse scattering transform for the focusing nonlinear Schrödinger equation. Commun. Pure and Appl. Math. 72, 1722–1805 (2019)

    Article  MATH  Google Scholar 

  • Bilman, D., Ling, L.M., Miller, P.D.: Extreme superposition: Rogue waves of infinite order and Painleve-III hierarchy. Duke Math. J. 169, 671–760 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Mu, G., Qin, Z.: Dynamic patterns of high-order rogue waves for Sasa-Satsuma equation. Nonlinear Anal. Real World Appl. 31, 179–209 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, L.H., Porsezian, K., He, J.S.: Breather and rogue wave solutions of a generalized nonlinear Schrodinger equation. Phys. Rev. E 87, 053202 (2013)

    Article  Google Scholar 

  • Wang, X., Li, Y., Chen, Y.: Generalized Darboux transformation and localized waves in coupled Hirota equations. Wave Motion 51, 1149–1160 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, G., Yan, Z., Wang, L.: The general coupled Hirota equations: modulational instability and higher-order vector rogue wave and multi-dark soliton structures Proc. R. Soc. A 475, 20180625 (2018)

    Google Scholar 

  • Ohta, Y., Yang, J.: Rogue waves in the Davey-Stewartson I equation. Phys. Rev. E 86, 036604 (2012)

    Article  Google Scholar 

  • Ohta, Y., Yang, J.: Dynamics of rogue waves in the Davey-Stewartson II equation. J. Phys. A: Math. Theor. 46, 105202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Ankiewicz, A., Akhmediev, N., Soto-Crespo, J.M.: Discrete rogue waves of the Ablowitz-Ladik and Hirota equations. Phys. Rev. E 82, 026602 (2010)

    Article  MathSciNet  Google Scholar 

  • Ohta, Y., Yang, J.: General rogue waves in the focusing and defocusing Ablowitz-Ladik equations. J. Phys. A: Math. Theor. 47, 255201 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Wen, X., Yan, Z., Malomed, B.A.: Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: exact solutions and stability. Chaos 26, 123110 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, H.N., Chow, K.W., Kedziora, D.J., Grimshaw, R.H.J., Ding, E.: Rogue wave modes for a derivative nonlinear Schrödinger model. Phys. Rev. E 89, 032914 (2014)

    Article  Google Scholar 

  • Yang, B., Chen, J., Yang, J.: Rogue waves in the generalized derivative nonlinear Schrödinger equations. J. Nonlinear. Sci. 30, 3027–3056 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, S., Zhou, Y., Bu, L., Baronio, F., Soto-Crespo, J.M., Mihalache, D.: Super chirped rogue waves in optical fibers. Opt. Exp. 27, 11370–11384 (2019)

    Article  Google Scholar 

  • Ling, L.M., Feng, B.F., Zhu, Z.: Multi-soliton, multi-breather and higher order rogue wave solutions to the complex short pulse equation. Physica D 327, 13–29 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Chow, K.W., Chan, H.N., Kedziora, D.J., Grimshaw, R.H.J.: Rogue wave modes for the long wave-short wave resonance model. J. Phys. Soc. Jpn. 82, 074001 (2013)

    Article  Google Scholar 

  • Wu, C., Grimshaw, R.H.J., Chow, K.W., Chan, H.N.: A coupled AB system: Rogue waves and modulation instabilities. Chaos 27, 091103 (2017)

    MathSciNet  Google Scholar 

  • Zhang, X., Chen, Y.: General high-order rogue waves to nonlinear Schrödinger-Boussinesq equation with the dynamical analysis. Nonlinear Dyn. 93, 2169–2184 (2018)

    Article  MATH  Google Scholar 

  • Yang, J., Yang, B.: Rogue waves in the nonlocal \(PT\)-symmetric nonlinear Schrödinger equation. Lett. Math. Phys. 109, 945–973 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Rao, J., Zhang, Y., Fokas, A.S., He, J.: Rogue waves of the nonlocal Davey-Stewartson I equation. Nonlinearity 31, 4090–4107 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, J., Chen, Y., Feng, B.: Rational solutions to two-and one-dimensional multicomponent Yajima-Oikawa systems. Phys. Lett. A 379, 1510–1519 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Benny, D.J., Roskes, G.J.: Wave instabilities. Stud. Appl. Math. 47, 377–385 (1969)

    Article  MATH  Google Scholar 

  • Davey, A., Stewartson, K.: On three-dimensional packets of surface waves. Proc. R. Soc. Lond. A 338, 101–110 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Fokas, A.S.: On the inverse scattering of first order systems in the plane related to nonlinear multidimensional equations. Phys. Rev. Lett. 51, 3–6 (1983)

    Article  MathSciNet  Google Scholar 

  • Fokas, A.S., Ablowitz, M.J.: On a method of solution for a class of multi-dimensional nonlinear evolution equations. Phys. Rev. Lett. 51, 7–10 (1983)

    Article  MathSciNet  Google Scholar 

  • Fokas, A.S., Santini, P.M.: Dromions and a boundary value problem for the Davey-Stewartson I equation. Physica D 44, 99–130 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Fokas, A.S., Pelinovski, D.E., Sulem, C.: Interaction of lumps with a line soliton for the DSII equation. Physica D 152, 189–198 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Charavarty, S., Kent, S.L., Newman, E.T.: Some reductions of the self-dual Yang-Mills equations to integrable systems in \(2+1\) dimensions. J. Math. Phys. 36, 763–772 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Djordjevict, V.D., Redekopp, L.G.: On two-dimensional packets of capillary-gravity waves. J. Fluid Mech. 79, 703–714 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Ablowitz, M.J., Segur, H.: On the evolution of packets of water waves. J. Fluid Mech. 92, 691–715 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Ablowitz, M.J., Biondini, G., Blair, S.: Nonlinear Schrödinger equations with mean terms in nonresonant multidimensional quadratic materials. Phys. Rev. E 63, 046605 (2001)

    Article  Google Scholar 

  • Cui, W., Sun, C., Huang, G.: Dromion excitations in self-defocusing optical media. Chin. Phys. Lett. 20, 246–249 (2003)

    Article  Google Scholar 

  • Sougleridis, I.I., Frantzeskakis, D.J., Horikis, T.P.: A Davey-Stewartson description of two-dimensional solitons in nonlocal media. Stud. Appl. Math. 144, 3–17 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Khismatulin, D.B., Akhatov, I.S.: Sound-ultrasound interaction in bubbly fluids: theory and possible applications. Phys. Fluids 13, 3582–3598 (2001)

    Article  MATH  Google Scholar 

  • Huang, G., Konotop, V.V., Tam, H.W., Hu, B.: Nonlinear modulation of multidimensional lattice waves. Phys. Rev. E 64, 056619 (2001)

    Article  MathSciNet  Google Scholar 

  • Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496–1503 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Sun, Y., Tian, B., Yuan, Y., Du, Z.: Semi-rational solutions for a \((2+1)\)-dimensional Davey-Stewartson system on the surface water waves of finite depth. Nonlinear Dyn. 94, 3029–3040 (2018)

    Article  Google Scholar 

  • Yuan, Y., Tian, B., Qu. Q,, Zhao. X., Xu, X.: Periodic-wave and semirational solutions for the (2 + 1)-dimensional Davey–Stewartson equations on the surface water waves of finite depth. Z. Angew. Math. Phys. 71, 46 (2020)

  • Tajiri, M., Arai, T.: Quasi-line soliton interactions of the Davey-Stewartson I equation: on the existence of long-range interaction between two quasi-line solitons through a periodic soliton. J. Phys. A: Math. Theor. 44, 235204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, X., Chen, Y., Tang, X.: Rogue wave and a pair of resonance stripe solitons to KP equation. Comput. Math. Appl. 76, 1938–1949 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, J., Ma, W.: Abundant interaction solutions of the KP equation. Nonlinear Dyn. 89, 1539–1544 (2017)

    Article  MathSciNet  Google Scholar 

  • Jia, M., Lou, S.: A predictable rogue wave and generating mechanisms (2018). arXiv:1803.01730v3 [nlin.SI]

  • Fokas, A.S., Pogrebkov, A.L.: Inverse scattering transform for the KPI equation on the background of a one-line soliton. Nonlinearity 16, 771–783 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Sato, M.: Soliton equations as dynamical systems on a infinite dimensional Grassmann manifolds. RIMS Kokyuroku 439, 30–46 (1981)

    Google Scholar 

  • Jimbo, M., Miwa, T.: Solitons and infinite dimensional Lie algebras. Publ. RIMS Kyoto Univ. 19, 943–1001 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Date, E., Kashiwara, M., Jimbo, M., Miwa, T.: Transformation groups for soliton equations. In: Jimbo, M., Miwa, T. (eds.) Nonlinear Integrable Systems-Classical Theory and Quantum Theory, pp. 39–119. World Scientific, Singapore (1983)

    Google Scholar 

  • Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  • Matsuno, Y.: Bilinear Transformation Method. Academic Press, New York (1984)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Y. Cheng of USTC for her fruitful suggestions. The work of J. He was supported by the National Natural Science Foundation of China (Grants 11671219 and 12071304). The work of J. Rao was supported by the Guangdong Basic and Applied Basic Research Foundation (Grant 2019A1515110208) and Shenzhen Science and Technology Program (Grant No. RCBS20200714114922203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingsong He.

Additional information

Communicated by Peter Miller.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this Appendix we will derive the semi-rational solutions (12), which comprise two dark solitons and one rational solitary wave. We will construct these solutions by taking a long wavelength limit of the four-soliton solutions. The four-soliton solutions (Satsuma and Ablowitz 1979) of the DSI are given by:

$$\begin{aligned} A=\sqrt{2}\frac{g_{4so}}{f_{4so}},\,Q={\epsilon }-( {2 {\mathrm{log}}} f_{4so})_{xx}, \end{aligned}$$
(70)

where the functions \(g_{4so}\) and \(f_{4so}\) take form below:

$$\begin{aligned} f_{4so}&=1+\sum \limits _{k=1}^{4}e^{\theta _k}+\sum \limits _{1\le k<s\le 4}^{4}A_{ks}e^{\theta _k+\theta _s} +\sum \limits _{1\le k<l<s\le 4}^{4}A_{kl}A_{ks}A_{ls}e^{\theta _k+\theta _l+\theta _s}\nonumber \\&\quad +\prod \limits _{1\le k<s\le 4}^{4}A_{ks}\,e^{\theta _1+\theta _2+\theta _3+\theta _4},\nonumber \\ g_{4so}&=1+\sum \limits _{k=1}^{4}e^{\theta _k+i\chi _k}+\sum \limits _{1\le k<s\le 4}^{4}A_{ks}e^{\theta _k+\theta _s+i(\chi _k+\chi _s)}\nonumber \\&\quad +\sum \limits _{1\le k<l<s\le 4}^{4}A_{kl}A_{ks}A_{ls}e^{\theta _k+\theta _l+\theta _s+i(\chi _k+\chi _l+\chi _s)}\nonumber \\&\quad +\prod \limits _{1\le k<s\le 4}^{4}A_{ks}\,e^{\theta _1+\theta _2+\theta _3+\theta _4+i(\chi _1+\chi _2+\chi _3+\chi _4)},\nonumber \\ \theta _{j}&=\widehat{p}_jx+\widehat{q}_jy+\widehat{\omega }_j t+\theta _{j,0},\nonumber \\ A_{ls}&=-\frac{2\epsilon \cos (\phi _l-\phi _s)+(\widehat{p}_l-\widehat{p}_s)^2-(\widehat{q}_l-\widehat{q}_s)^2-2\epsilon }{2\epsilon \cos (\phi _l+\phi _s) +(\widehat{p}_l+\widehat{p}_s)^2-(\widehat{q}_l+\widehat{q}_s)^2-2\epsilon }, \nonumber \\ e^{i\chi _j}&=1-\frac{\widehat{p}_j^2-\widehat{q}_j^2}{2\epsilon }-i\frac{(\widehat{p}_j^2-\widehat{q}_j^2)\sqrt{-1+\frac{4\epsilon }{\widehat{p}_j^2-\widehat{q}_j^2}}}{2\epsilon }, \end{aligned}$$
(71)

and the parameters \(\widehat{p}_j,\widehat{q}_j\) and \({\widehat{\omega }}_j\) satisfy the dispersion relation

$$\begin{aligned} (\widehat{p}_j^2-\widehat{q}_j^2){\widehat{\omega }}_j^2+(\widehat{p}_j^2-\widehat{q}_j^2-4\epsilon )(\widehat{p}_j^2+\widehat{q}_j^2)^2=0,\; j=1,2,3,4. \end{aligned}$$
(72)

To construct the semi-rational solution given by Eq. (12), we first let \(\theta _{s,0}\rightarrow \delta {\widehat{\theta }}_{s,0}+i\pi ,\widehat{p}_s\rightarrow \delta \widehat{p}_s,\widehat{q}_s\rightarrow \delta \widehat{q}_s\) (\(s=1,2\)) and then take the limit as \(\delta \rightarrow 0\). One obtain

$$\begin{aligned} \begin{aligned} e^{\theta _s}&={-1}-\delta {\widehat{\theta }}_s+ \vartheta \left( {\delta ^2}\right) ,\\ e^{\theta _s+i\chi _s}&=-\delta ({\widehat{\theta }}_s+b_s)+ \vartheta \left( {\delta ^2}\right) ,\\ A_{12}&=1+a_{12}\delta ^2+ \vartheta \left( \delta ^4\right) ,A_{sj}=1+a_{sj}\delta + \vartheta ({\delta ^2}),\; j=3, 4, \end{aligned} \end{aligned}$$
(73)

where

$$\begin{aligned} {\widehat{\theta }}_s&=\widehat{p}_sx+\widehat{q}_sy+{2\gamma _s\left( \widehat{p}_s^2+\widehat{q}_s^2\right) \sqrt{\frac{\epsilon }{\widehat{p}_s^2-\widehat{q}_s^2}}}t+\theta _{s,0},\nonumber \\ a_{12}&=\frac{|\widehat{p}_1^2-\widehat{q}_1^2|^2}{2\gamma _1\gamma _2|\widehat{p}_1^2-\widehat{q}_1^2|-2\epsilon \left( |\widehat{p}_1|^2-|\widehat{q}_1|^2\right) },\nonumber \\ a_{sj}&=\frac{\epsilon (\widehat{p}_s^2-\widehat{q}_s^2)\left( \widehat{p}_j^2-\widehat{q}_j^2\right) }{\gamma _s(\widehat{p}_s^2-\widehat{q}_s^2)(\widehat{p}_j^2-\widehat{q}_j^2) \sqrt{\left( -1+\frac{4\epsilon }{\widehat{p}_j^2-\widehat{q}_j^2}\right) \frac{\epsilon }{\widehat{p}_s^2-\widehat{q}_s^2}}-2(\widehat{p}_s\widehat{p}_j-\widehat{q}_s\widehat{q}_j)},\nonumber \\ b_s&=-i\epsilon \gamma _s\left( \widehat{p}_s^2-\widehat{q}_s^2\right) \sqrt{\frac{\epsilon }{\widehat{p}_s^2-\widehat{q}_s^2}}, \gamma _s=\pm 1. \end{aligned}$$
(74)

Then, by implementing the above limit procedure, the functions \(f_{4so}\) and \(g_{4so}\) in Eq. (71) can be rewritten in the following form:

$$\begin{aligned} \begin{aligned} f&={\widehat{\theta }}_1{\widehat{\theta }}_2+a_{12}+(({\widehat{\theta }}_1+a_{13})({\widehat{\theta }}_2+a_{23})+a_{12})e^{\theta _3}\\&\quad +(({\widehat{\theta }}_1+a_{14})({\widehat{\theta }}_2+a_{24})+a_{12})e^{\theta _4}+\\&\quad a_{34}(({\widehat{\theta }}_1+a_{13}+a_{14})({\widehat{\theta }}_2+a_{23}+a_{24})+a_{12})e^{\theta _3+\theta _4},\\ g&=({\widehat{\theta }}_1+b_1)({\widehat{\theta }}_2+b_2)+a_{12}+(({\widehat{\theta }}_1+b_1+a_{13})({\widehat{\theta }}_2+b_2+a_{23})+a_{12})e^{\theta _3+\chi _3}\\&\qquad +(({\widehat{\theta }}_1+b_1+a_{14})({\widehat{\theta }}_2+b_2+a_{24})+a_{12})e^{\theta _4+i\chi _4}+\\&\quad a_{34}(({\widehat{\theta }}_1+b_1+a_{13}+a_{14})({\widehat{\theta }}_2+b_2+a_{23}+a_{24})+a_{12})e^{\theta _3+\theta _4+i(\chi _3+\chi _4)}.\nonumber \end{aligned}\\ \end{aligned}$$
(75)

Here we have denoted \(A_{34}=a_{34}\) to be consistent with the expressions of the function f and g in Eq. (13). To keep the function f real, we take the following parametric constraint:

$$\begin{aligned} \widehat{p}_2=\widehat{p}_1^*,\widehat{q}_2=\widehat{q}_1^*,\theta _{2,0}=\theta _{1,0}^*,\gamma _1\gamma _2=1, \end{aligned}$$
(76)

when \(p_{1R}\ne 0\) or \(q_{1R}\ne 0\); or the parametric condition

$$\begin{aligned} \widehat{p}_2=\widehat{p}_1,\widehat{q}_2=\widehat{q}_1,\theta _{2,0}=\theta _{1,0}^*,\gamma _1\gamma _2=-1, \end{aligned}$$
(77)

when \(\widehat{p}_1,\widehat{q}_1\) are real parameters and \(\frac{\epsilon }{\widehat{p}_1^2-\widehat{q}_1^2}<0\). Then we can obtain

$$\begin{aligned} {\widehat{\theta }}_2={\widehat{\theta }}_1^*,b_2=-b_1^*,a_{12}^*=a_{12},a_{23}=a_{13}^{*},a_{24}=a_{14}^{*}. \end{aligned}$$
(78)

For simplicity, we take \(\widehat{p}_s,\widehat{q}_s\) as

$$\begin{aligned} \begin{aligned} \widehat{p}_1&=\frac{1}{2}\left( p-\frac{\epsilon }{p}\right) , \widehat{p}_2=\frac{1}{2}\left( p^{*}-\frac{\epsilon }{p^{*}}\right) ,\\ \widehat{q}_1&=\frac{1}{2}\left( p+\frac{\epsilon }{p}\right) , \widehat{q}_2=\frac{1}{2}\left( p^{*}+\frac{\epsilon }{p^{*}}\right) , \\ \widehat{p}_3&=\frac{1}{2}\left( \widetilde{p}_3+\widetilde{p}_3^*+\frac{\epsilon }{\widetilde{p}_3}+\frac{\epsilon }{{\widetilde{p}_3}^*}\right) , \widehat{q}_3=\frac{1}{2}\left( \widetilde{p}_3+\widetilde{p}_3^*-\frac{\epsilon }{\widetilde{p}_3}-\frac{\epsilon }{{\widetilde{p}_3}^*}\right) ,\\ \widehat{p}_4&=\frac{1}{2}\left( \widetilde{p}_4+\widetilde{p}_4^*+\frac{\epsilon }{\widetilde{p}_4}+\frac{\epsilon }{{\widetilde{p}_4}^*}\right) ,\\ \widehat{q}_4&=\frac{1}{2}\left( \widetilde{p}_4+\widetilde{p}_4^*-\frac{\epsilon }{\widetilde{p}_4}-\frac{\epsilon }{{\widetilde{p}_4}^*}\right) , \gamma _1=-1,\gamma _2=1. \end{aligned} \end{aligned}$$
(79)

Then the functions f and g in Eq. (75) become the functions \(\widehat{f}\) and \(\widehat{g}\) in Eq. (13). This generates the semi-rational solution A and Q expressed by Eq. (12). It is noted that Ablowitz and Satsuma were first to use the long wavelength limit procedure to construct rational N-lump solutions of the DS equations from exponential 2N-soliton solutions (Satsuma and Ablowitz 1979). In this appendix, we mainly use the long wavelength limit procedure to obtain from four dark solitons certain mixed solutions consisting of a rational solitary wave and two dark solitons.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, J., Fokas, A.S. & He, J. Doubly Localized Two-Dimensional Rogue Waves in the Davey–Stewartson I Equation. J Nonlinear Sci 31, 67 (2021). https://doi.org/10.1007/s00332-021-09720-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-021-09720-6

Keywords

Mathematics Subject Classification

Navigation