Abstract
Using the integrability of the sinh-Gordon equation, we demonstrate the spectral stability of its elliptic solutions. With the first three conserved quantities of the sinh-Gordon equation, we construct a Lyapunov functional. By using such Lyapunov functional, we show that these elliptic solutions are orbitally stable with respect to subharmonic perturbations of arbitrary period.


Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)
Arnold, V.I.: On an a priori estimate in the theory of hydrodynamical stability. Am. Math. Soc. Transl. 79, 267–269 (1969)
Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York, NY (1997)
Bottman, N., Deconinck, B.: KdV cnoidal waves are spectrally stable. DCDS-A 25, 1163–1180 (2009)
Bottman, N., Deconinck, B., Nivala, M.: Elliptic solutions of the defocusing NLS equation are stable. J. Phys. A 44, 285 (2011)
Chen, F.: Introduction to Plasma Physics and Controlled Fusion. Plenum Press, New York (1984)
Chern, S.S.: Geometrical interpretation of the sinh-Gordon equation. Ann. Pol. Math. 1, 63–69 (1981)
Deconinck, B., Kapitula, T.: On the spectral and orbital stability of spatially periodic stationary solutions of generalized Korteweg–de Vries equations. In: Guyenne, P., Nicholls, D., Sulem, C. (eds) Hamiltonian Partial Differential Equations and Applications. Fields Inst. Commun. 75. Springer, New York, pp. 285–322 (2020)
Deconinck, B., Kapitula, T.: The orbital stability of the cnoidal waves of the Korteweg–de Vries equation. Phys. Lett. A 374, 4018–4022 (2010)
Deconinck, B., Nivala, M.: The stability analysis of the periodic traveling wave solutions of the mKdV equation. Stud. Appl. Math. 126, 17–48 (2011)
Deconinck, B., Segal, B.L.: The stability spectrum for elliptic solutions to the focusing NLS equation. Phys. D 346, 1–19 (2017)
Deconinck, B., Upsal, J.: The orbital stability of elliptic solutions of the Focusing Nonlinear Schrödinger Equation. SIAM J. Math. Anal. 52, 1–41 (2020)
Deconinck, B., McGill, P., Segal, B.L.: The stability spectrum for elliptic solutions to the sine-Gordon equation. Phys. D 360, 17–35 (2020)
Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1981)
Gallay, T., Pelinovsky, D.: Orbital stability in the cubic defocusing NLS equation: I. Cnoidal periodic waves. J. Differ. Equ. 258, 3607–3638 (2020)
Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74, 160–197 (1987)
Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. II. J. Funct. Anal. 94, 308–348 (1990)
Haragus, M., Kapitula, T.: On the spectra of periodic waves for infinite-dimensional Hamiltonian systems. Phys. D 237, 2649–2671 (2008)
Hasegawa, A.: Optical Solitons in Fibers. Springer, Berlin (1989)
Henry, D.B., Perez, J.F., Wreszinski, W.F.: Stability theory for solitary-wave solutions of scalar field equations. Commun. Math. Phys. 85, 351–361 (1982)
Holm, D.D., Marsden, J.E., Ratiu, T., Weinstein, A.: Nonlinear stability of fluid and plasma equilibria. Phys. Rep. 123, 1–116 (1985)
Jones, C.K.R.T., Marangell, R., Miller, P.D., Plaza, R.G.: On the stability analysis of periodic sine-Gordon traveling waves. Phys. D 251, 63–74 (2013)
Jones, C.K.R.T., Marangell, R., Miller, P.D., Plaza, R.G.: Spectral and modulational stability of periodic wavetrains for the nonlinear Klein-Gordon equation. J. Differ. Equ. 257, 4632–4703 (2014)
Larsen, A.L., Sanchez, N.: sinh-Gordon, cosh-Gordon, and Liouville equations for strings and multistrings in constant curvature spacetimes. Phys. Rev. D 54, 2801–2807 (1996)
Lawden D.F.: Elliptic Functions and Applications (Applied Mathematical Sciences vol 80). Springer, New York (1989)
Maddocks, J.H., Sachs, R.L.: On the stability of KdV multi-solitons. Commun. Pure Appl. Math. 46, 867–901 (1993)
McKean, H.P.: The sin-gordon and sinh-gordon equations on the circle. Commun. Pure Appl. Math. 34, 197–257 (1981)
Natali, F.: On periodic waves for sine-and sinh-Gordon equations. J. Math. Anal. Appl. 379, 334–350 (2011)
Newell, A.C.: Solitons in Mathematics and Physics, vol. 48. SIAM, Philadelphia (1985)
NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.14 of 2016-12-21. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds
Nivala, M., Deconinck, B.: Periodic finite-genus solutions of the KdV equation are orbitally stable. Phys. D 239, 1147–1158 (2010)
Sachs, R.L.: Completeness of derivatives of squared Schrödinger eigenfunctions and explicit solutions of the linearized KdV equation. SIAM J. Math. Anal. 14, 674–683 (1983)
Upsal, J., Deconinck, B.: Real Lax spectrum implies spectral stability. Stud. Appl. Math. 145, 765–790 (2020)
Weinstein, M.I.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun. Pure Appl. Math. 39, 51–67 (2003)
Wiegel, R.L.: A presentation of cnoidal wave theory for practical application. J. Fluid Mech. 7, 273–286 (1960)
Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, vol. 2, 2nd edn. Springer, New York (2003)
Acknowledgements
The authors are grateful to the referees and editor for their excellent suggestions. WS has been supported by the National Natural Science Foundation of China under Grant No. 61705006, and by the Fundamental Research Funds of the Central Universities (No. 230201606500048).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Peter Miller.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
Lemma
For \(c>1\), \(\frac{P(\zeta _{1})}{\zeta ^2_{1}}>0\) and \(\frac{P(\zeta _{2})}{\zeta ^2_{2}}<0\), while for \(c<-1\), \(\frac{P(\zeta _{1})}{\zeta ^2_{1}}<0\) and \(\frac{P(\zeta _{2})}{\zeta ^2_{2}}>0\).
Proof
-
For \(c>1\),
$$\begin{aligned}&\frac{P(\zeta _{1})}{\zeta ^2_{1}}=8 c \sqrt{{\mathcal {E}}^2-1} K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) +8 ({\mathcal {E}}+1) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) \nonumber \\&\quad -8 ({\mathcal {E}}+1) E\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) . \end{aligned}$$(83)Since \(E(k)<K(k)\), \(c>1\) and \({\mathcal {E}}>1\), we have \(\frac{P(\zeta _{1})}{\zeta ^2_{1}}>0\).
$$\begin{aligned}&\frac{P(\zeta _{2})}{\zeta ^2_{2}}= 8 c \left( -\sqrt{{\mathcal {E}}^2-1}\right) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) +8 ({\mathcal {E}}+1) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) \nonumber \\&\quad -8 ({\mathcal {E}}+1) E\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) . \end{aligned}$$(84)Let \(\frac{P(\zeta _{2})}{\zeta ^2_{2}}=F(c)\). We note that \(F'(c)=8\left( -\sqrt{{\mathcal {E}}^2-1}\right) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) <0\). We have
$$\begin{aligned}&F(c)<F(1)=8 \left( -\sqrt{{\mathcal {E}}^2-1}\right) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) +8 ({\mathcal {E}}+1) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) \nonumber \\&\quad -8 ({\mathcal {E}}+1) E\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) . \end{aligned}$$(85)Using \(\frac{E(k)}{K(k)}>k'=\sqrt{1-k^2}\) , see [1, 19.9.8], we have
$$\begin{aligned}&8 \left( -\sqrt{{\mathcal {E}}^2-1}\right) +8 ({\mathcal {E}}+1)-8 ({\mathcal {E}}+1) \frac{E\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) }{K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) }<8 \left( -\sqrt{{\mathcal {E}}^2-1}\right) \nonumber \\&\quad +8 ({\mathcal {E}}+1)-8\sqrt{2}\sqrt{{\mathcal {E}}+1}. \end{aligned}$$(86)Let \(Q({\mathcal {E}})=8 \left( -\sqrt{{\mathcal {E}}^2-1}\right) +8 ({\mathcal {E}}+1)-8\sqrt{2}\sqrt{{\mathcal {E}}+1}\). We note \(Q'({\mathcal {E}})=-\frac{8 {\mathcal {E}}}{\sqrt{{\mathcal {E}}^2-1}}+8-\frac{4 \sqrt{2}}{\sqrt{{\mathcal {E}}+1}}<-\frac{4 \sqrt{2}}{\sqrt{{\mathcal {E}}+1}}<0\). So we have \(Q({\mathcal {E}})<Q(1)=0\) for \({\mathcal {E}}>1\). Therefore, we have \(\frac{P(\zeta _{2})}{\zeta ^2_{2}}=F(c)<F(1)<K \left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) Q({\mathcal {E}})<0\).
-
For \(c<-1\),
$$\begin{aligned} \frac{P(\zeta _{1})}{\zeta ^2_{1}}=8 c \sqrt{{\mathcal {E}}^2-1} K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) +8 ({\mathcal {E}}+1) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) -8 ({\mathcal {E}}+1) E\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) .\nonumber \\ \end{aligned}$$(87)Let \(\frac{P(\zeta _{1})}{\zeta ^2_{1}}=G(c)\). We note that \(G'(c)=8\left( \sqrt{{\mathcal {E}}^2-1}\right) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) >0\). We have
$$\begin{aligned}&G(c)<G(-1)=8 \left( -\sqrt{{\mathcal {E}}^2-1}\right) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) +8 ({\mathcal {E}}+1) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) \nonumber \\&\quad -8 ({\mathcal {E}}+1) E\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) . \end{aligned}$$(88)Again, using \(\frac{E(k)}{K(k)}>k'=\sqrt{1-k^2}\), we have
$$\begin{aligned}&8 \left( -\sqrt{{\mathcal {E}}^2-1}\right) +8 ({\mathcal {E}}+1)-8 ({\mathcal {E}}+1) \frac{E\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) }{K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) }<8 \left( -\sqrt{{\mathcal {E}}^2-1}\right) \nonumber \\&\quad +8 ({\mathcal {E}}+1)-8\sqrt{2}\sqrt{{\mathcal {E}}+1}. \end{aligned}$$(89)We know \(Q({\mathcal {E}})<Q(1)=0\) for \({\mathcal {E}}>1\). Therefore, \(\frac{P(\zeta _{1})}{\zeta ^2_{1}}=G(c)<G(-1)<K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) Q({\mathcal {E}})<0\).
$$\begin{aligned}&\frac{P(\zeta _{2})}{\zeta ^2_{2}}= 8 c \left( -\sqrt{{\mathcal {E}}^2-1}\right) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) +8 ({\mathcal {E}}+1) K\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) \nonumber \\&\quad -8 ({\mathcal {E}}+1) E\left( \sqrt{\frac{{\mathcal {E}}-1}{{\mathcal {E}}+1}}\right) . \end{aligned}$$(90)Since \(E(k)<K(k)\), \(c<-1\) and \({\mathcal {E}}>1\), we have \(\frac{P(\zeta _{2})}{\zeta ^2_{2}}>0\). This finishes the proof of the lemma.
\(\square \)
Rights and permissions
About this article
Cite this article
Sun, WR., Deconinck, B. Stability of Elliptic Solutions to the sinh-Gordon Equation. J Nonlinear Sci 31, 63 (2021). https://doi.org/10.1007/s00332-021-09722-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00332-021-09722-4