Skip to main content
Log in

Blowup Rate Estimates of a Singular Potential and Its Gradient in the Landau-de Gennes Theory

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we revisit a singular bulk potential in the Landau-de Gennes free energy that describes nematic liquid crystal configurations in the framework of the Q-tensor order parameter. This Maier–Saupe type singular potential was originally introduced in Katriel et al. (Mol Cryst Liquid Cryst 1:337–355, 1986), which is considered as a natural enforcement of a physical constraint on the eigenvalues of symmetric, traceless Q-tensors. Specifically, we establish blowup rates of both this singular potential and its gradient as Q approaches its physical boundary. All of the proofs are elementary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ball, J.: Mathematics of liquid crystals. Cambridge Centre for Analysis short course, 13–17 (2012)

  • Ball, J.: Analysis of liquid crystals and their defects, Lecture notes of the Scuola Estiva GNFM, Ravello, 17–22 (2018)

  • Ball, J., Majumdar, A.: Nematic liquid crystals: from Maier-Saupe to a continuum theory. Mol. Cryst. Liq. Cryst. 525, 1–11 (2010)

    Article  Google Scholar 

  • Ball, J., Majumdar, A.: Passage from the mean-field Maier-Saupe to the continuum Landau-de Gennes theory for nematic liquid crystals, work in progress

  • Bauman, P., Phillips, D.: Regularity and the behavior of eigenvalues for minimizers of a constrained Q-tensor energy for liquid crystals. Calc. Var. Partial Differ. Equ. 55, 55–81 (2016)

    Article  MathSciNet  Google Scholar 

  • Berreman, D.W., Meiboom, S.: Tensor representation of Oseen-Frank strain energy in uniaxial cholesterics. Phys. Rev. A 30, 1955–1959 (1984)

    Article  Google Scholar 

  • Davis, T.A., Gartland, E.C.: Finite element analysis of the Landau-de Gennes minimization problem for liquid crystals. SIAM J. Numer. Anal. 35(1), 336–362 (1998)

    Article  MathSciNet  Google Scholar 

  • de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals. Oxford Science Publications, Oxford (1993)

    Google Scholar 

  • Dickmann, S.: Numerische Berechnung von Feld und Molekülausrichtung in Flüssigkristallanzeigen. Ph.D. thesis, University of Karlsruhe (1995)

  • Du, H.R., Hu, X.P., Wang, C.Y.: Suitable weak solutions for the co-rotational Beris-Edwards system in dimension three. Arch. Ration. Mech. Anal. 238(1), 749–803 (2020)

    Article  MathSciNet  Google Scholar 

  • Evans, L.C., Kneuss, O., Tran, H.: Partial regularity for minimizers of singular energy functionals, with application to liquid crystal models. Trans. Am. Math. Soc. 368(5), 3389–3413 (2016)

    Article  MathSciNet  Google Scholar 

  • Feireisl, E., Rocca, E., Schimperna, G., Zarnescu, A.: Evolution of non-isothermal Landau-de Gennes nematic liquid crystals flows with singular potential. Commun. Math. Sci. 12, 317–343 (2014)

    Article  MathSciNet  Google Scholar 

  • Feireisl, E., Rocca, E., Schimperna, G., Zarnescu, A.: Nonisothermal nematic liquid crystal flows with the Ball-Majumdar free energy. Annali di Mat. Pura ed App. 194(5), 1269–1299 (2015)

    Article  MathSciNet  Google Scholar 

  • Geng, Z.Y., Tong, J.J.: Regularity of minimizers of a tensor-valued variational obstacle problem in three dimensions. Calc. Var. 59, 57 (2020). https://doi.org/10.1007/s00526-020-1717-7

    Article  MathSciNet  MATH  Google Scholar 

  • Golovaty, D., Kim, Y.K., Lavrentovich, O., Novack, M., Sternberg, P.: Phase transitions in nematics: textures with tactoids and disclinations. Math. Model. Nat. Phenom. 15(8), 10 (2020a)

    MathSciNet  MATH  Google Scholar 

  • Golovaty, D., Novack, M., Sternberg, P.: A novel Landau-de Gennes model with quartic elastic terms. Eur. J. Appl. Math. 32(1), 177–198 (2020b)

    Article  MathSciNet  Google Scholar 

  • Katriel, L., Kventse, G.F., Luckhurst, G., Sluckin, T.: Free energies in the Landau and molecular field approaches. Mol. Cryst. Liquid Cryst. 1, 337–355 (1986)

    Article  Google Scholar 

  • Kitavtsev, G., Robbins, J.M., Slastikov, V., Zarnescu, A.: Liquid crystal defects in the Landau-de Gennes theory in two dimensions-beyond the one-constant approximation. Math. Models Methods Appl. Sci. 26(14), 2769–2808 (2016)

    Article  MathSciNet  Google Scholar 

  • Iyer, G., Xu, X., Zarnescu, A.: Dynamic cubic instability in a 2D Q-tensor model for liquid crystals. Math. Models Methods Appl. Sci. 25(8), 1477–1517 (2015)

    Article  MathSciNet  Google Scholar 

  • Lu, X.Y., Liu, Y.N., Xu, X.: Regularity of a gradient flow generated by the anisotropic Landau-de Gennes energy with a singular potential. arXiv:2011.09541v2 (2020)

  • Longa, L., Monselesan, D., Trebin, H.R.: An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals. Liq. Cryst. 2(6), 769–796 (1987)

    Article  Google Scholar 

  • Maier, W., Saupe, A.: A simple molecular statistical theory of the nematic crystalline-liquid phase. I Z Naturf. a 14, 882–889 (1959)

    Article  Google Scholar 

  • Majumdar, A.: Equilibrium order parameters of liquid crystals in the Landau-de Gennes theory. Eur. J. Appl. Math. 21(2), 181–203 (2010)

    Article  MathSciNet  Google Scholar 

  • Majumdar, A., Zarnescu, A.: Landau-De Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond. Arch. Ration. Mech. Anal. 196(1), 227–280 (2010)

    Article  MathSciNet  Google Scholar 

  • Mottram, N.J., Newton, J.P.: Introduction to Q-tensor theory. arXiv preprint, arXiv:1409.3542 (2014)

  • Olver, F., Lozier, D., Boisvert, R., Clark, C.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  • Paicu, M., Zarnescu, A.: Global existence and regularity for the full coupled Navier–Stokes and Q-tensor system. SIAM J. Math. Anal. 43(5), 2009–2049 (2011)

    Article  MathSciNet  Google Scholar 

  • Paicu, M., Zarnescu, A.: Energy dissipation and regularity for a coupled Navier–Stokes and Q-tensor system. Arch. Ration. Mech. Anal. 203(1), 45–67 (2012)

    Article  MathSciNet  Google Scholar 

  • Virga, E.: Variational Theories for Liquid Crystals, Applied Mathematics and Mathematical Computation, 8. Chapman & Hall, London (1994)

    Google Scholar 

  • Wilkinson, M.: Strict physicality of global weak solutions of a Navier–Stokes Q-tensor system with singular potential. Arch. Ration. Mech. Anal. 218, 487–526 (2015)

    Article  MathSciNet  Google Scholar 

  • Wu, H., Xu, X., Zarnescu, A.: Dynamics and flow effects in the Beris-Edwards system modelling nematic liquid crystals. Arch. Rational Mech. Anal. 231, 1217–1267 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor John Ball for his kind discussions, especially pointing out several useful references to us. We thank the anonymous referees for their suggestions to improve the quality of our paper. X. Y. Lu’s work is supported by his NSERC Discovery Grant “Regularity of minimizers and pattern formation in geometric minimization problems.” X. Xu’s work is supported by the NSF Grant DMS-2007157 and the Simons Foundation Grant No. 635288. W. J. Zhang’s work is supported by NSF Grant DMS-1818861.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Xu.

Additional information

Communicated by Eliot Fried.

Dedicated to Professor David Kinderlehrer’s 80th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X.Y., Xu, X. & Zhang, W. Blowup Rate Estimates of a Singular Potential and Its Gradient in the Landau-de Gennes Theory. J Nonlinear Sci 32, 6 (2022). https://doi.org/10.1007/s00332-021-09761-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-021-09761-x

Keywords

MSC codes

Navigation