Skip to main content
Log in

On the Geophysical Green-Naghdi System

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, a modified Green-Naghdi system with the effect of the Coriolis force is derived, which is a model in the equatorial oceanography to describe the propagation of large amplitude surface waves. The effects of the Coriolis force caused by the Earth’s rotation and nonlinearities on local well-posedness and traveling wave solutions are then investigated. Employing Kato’s theory, the local well-posedness in Sobolev space \(H^s\) with \(s>\frac{5}{2}\) is established. Based on the qualitative method combined with the bifurcation method of dynamical systems, the classification of all traveling wave solutions, all possible phase portraits of bifurcations and exact traveling wave solutions to this system are obtained under various conditions about the parameters depending on the value of the rotation \(\Omega \)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvarez-Samaniego, B., Lannes, D.: A Nash-Moser theorem for singular evolution equations. Application to the Serre and Green-Naghdi equations. Indiana Univ. Math. J. 57, 97–131 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Alvarez-Samaniego, B., Lannes, D.: Large time existence for 3D water-waves and asymptotics. Invent. Math. 171, 485–541 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Benjamin, T., Bona, J., Mahony, J.: Model equations for long waves in nonlinear dispersive media. Phil. Trans. Roy. Soc. Lond. A 272, 47–78 (1972)

    Article  MATH  Google Scholar 

  • Boussinesq, J.: Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal. Comptes Rendus Acad. Sci. Paris 73, 256–260 (1871)

    MATH  Google Scholar 

  • Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, M., Gui, G., Liu, Y.: On a shallow-water approximation to the Green-Naghdi equations with the Coriolis effect. arXiv:1801.04666v1 [math.AP] 15 Jan 2018

  • Carter, J.D., Cienfuegos, R.: The kinematics and stability of solitary and cnoidal wave solutions of the Serre equations. Eur. J. Mech. B 30, 259–268 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, A.: Nonliear Water Waves with Applications to Wave-Current Interactions and Tsunamis. CBMS-NSF Conference Series in Applied Mathematics, vol. 81. SIAM, Philadelphia (2011)

  • Constantin, A.: On the modelling of equatorial waves. Geophys. Res. Lett. 39, L05602 (2012)

    Article  Google Scholar 

  • Constantin, A.: On equatorial wind waves. Differ. Integr. Equ. 26, 237–252 (2013)

    MathSciNet  MATH  Google Scholar 

  • Constantin, A.: Some three-dimensional nonlinear equatorial flows. J. Phys. Ocean. 43, 165–175 (2013)

    Article  Google Scholar 

  • Constantin, A.: An exact solution for equatorially trapped waves. J. Geophys. Res. 117, C05029 (2012)

    Google Scholar 

  • Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, A., Germain, P.: Instability of some equatorially trapped waves. J. Geophys. Res. 118, 2802–2810 (2013)

    Article  Google Scholar 

  • Constantin, A., Ivanov, R.I.: On an integrable two-component Camassa-Holm shallow water system. Phys. Lett. A 372, 7129–7132 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Dellar, P.J., Salmon, R.: Shallow water equations with a complete Coriolis force and topography. Phys. Fluids 17, 106601 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Deng, S., Guo, B., Wang, T.: Some traveling wave solitons of the Green-Naghdi system. Int. J. Bifurc. Chaos 21, 575–585 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Deng, S., Guo, B., Wang, T.: Traveling wave solutions of the Green-Naghdi system. Int. J. Bifurc. Chaos 23, 1350087 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Dutykh, D., Ionescu-Kruse, D.: Travelling wave solutions for some two-component shallow water models. J. Differ. Equ. 262, 1099–1114 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Dyke, M. Van: Particle trajectories in plane periodic water waves. An album of fluid motion (pp. 110-111). Stanford, CA: The Parabolic Press (1982)

  • Escher, J., Lechttenfeld, O., Yin, Z.: Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete Contin. Dyn. Sys 19, 493–513 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • El, G.A., Grimshaw, R.H.J., Smyth, N.F.: Unsteady undular bores in fully nonlinear shallow-water theory. Phys. Fluids 18, 027104 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Fan, L., Gao, H., Liu, Y.: On the rotation-two-component Camassa-Holm system modelling the equatorial water waves. Adv. Math. 291, 59–89 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Faqur, M., Manna, M.A., Neveu, A.: An integrable equation governing short waves in a long-wave model. Proc. R. Soc. A 463, 1939–1954 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Gallagher, I., saint-raymond, L.: On the influence of the Earth’s rotation on geophysical flows. Handbook Math. Fluid Mech. 4, 201–329 (2007)

    MathSciNet  Google Scholar 

  • Geyer, A., Quirchmayr, R.: Shallow water equations for equatorial tsunami waves. Philos. Trans. 376, 20170100 (2018)

    MathSciNet  MATH  Google Scholar 

  • Gill, A.E.: Atmosphere-ocean dynamics. Elsevier, Amsterdam (2016)

    Google Scholar 

  • Green, A.E., Laws, P., Naghdi, P.M.: On the theory of water waves. Pro. R. Soc. A 338, 43–55 (1974)

    MathSciNet  MATH  Google Scholar 

  • Green, A.E., Naghdi, P.M.: A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 78, 234–246 (1976)

    Article  MATH  Google Scholar 

  • Gui, G., Liu, Y., Sun, J.: A nonlocal shallow-water model arising from the full water waves with the Coriolis effect. J. Math. Fluid Mech. 21, 27 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Gui, G., Liu, Y., Luo, T.: Model equations and traveling wave solutions for shallow-water waves with the Coriolis effect. J. Nonlinear Sci. 29, 993–1039 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Henry, D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B. Fluids 38, 18–21 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Ionescu-Kruse, D.: On Pollard’s wave at the equator. J. Nonlinear Math. Phys. 22, 523–530 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Ionescu-Kruse, D.: Variational derivation of a geophysical Camassa-Holm type shallow water equation. Nonlinear Anal. 156, 283–304 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Ionescu-Kruse, D.: Variational derivation of the Green-Naghdi shallow-water equations. J. Nonlinear Math. Phys. 19, 1240001 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Ionescu-Kruse, D., Matioc, A.V.: Small-amplitude equatorial water waves with constant vorticity: dispersion relations and particle trajectories. Discrete Contin. Dyn. Syst. Ser. A 34, 3045–3060 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Israwi, S.: Large time existence for 1D Green-Naghdi equations. Nonlinear Anal. 74, 81–93 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, B., Bi, Q.S.: Classification of traveling wave solutions to the Green-Naghdi model. Wave Motion 73, 45–56 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Kato, T.: Quasi-Linear Equations of Evolution, with Applications to Partical Differential Equations Spectral Theory and Differential Equation. Lect. Notes Math. 448, 25–70 (1975)

    Article  Google Scholar 

  • Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves. Phil. Mag. 39, 422–442 (1895)

    Article  MATH  Google Scholar 

  • Lenells, J.: Traveling wave solutions of the Camassa-Holm equations. J. Differ. Equ. 217, 393–430 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Y.A.: A shallow-water approximation to the full water wave problem. Comm. Pure Appl. Math. 59, 1225–1285 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Y.A.: Linear stability of solitary waves of the Green-Naghdi equations. Comm. Pure Appl. Math. 54, 501–536 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Y.A.: Hamiltonian structure and linear stability of solitary waves of the Green-Naghdi equations. J. Nonlinear Math. Phys. 9, 99–105 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, J.: Singular nonlinear travelling wave equations: Bifurcations and exact solutions. Science Press (2013)

  • Li, J., Zhang, Y., Zhao, X.: On a class of singular nonlinear traveling wave equations (ii): An example of GCKDV equations. Int. J. Bifurc. Chaos 19, 1995–2007 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Martin, C.I.: Equatorial wind waves with capillary effects and stagnation points. Nonlinear Anal.: TMA 96, 1–17 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Matioc, A.V.: Exact geophysical waves in stratified fluids. Appl. Anal. 92, 2254–2261 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Matioc, A.V.: An exact solution for geophysical equatorial edge waves over a sloping beach. J. Phys. A 45, 365501 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Miles, J., Salmon, R.: Weakly dispersive nonlinear gravity waves. J. Fluid Mech. 157, 519–531 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Salman, R.: Lectures on Geophysical Fluid Dynamics. Oxford University Press, Oxford (1998)

    Book  Google Scholar 

  • Stoker, J. J.: Water waves: The mathematical theory with applications. Wiley-Interscience New-York, (1992)

  • Teshukov, V.M., Gavrilyuk, S.L.: Three-dimensional nonlinear dispersive waves on shear flows. Stud. Appl. Math. 116, 241–255 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Wen, Z.S.: Bifurcations and exact traveling wave solutions of the celebrated Green-Naghdi equations. Int. J. Bifurc. Chaos 27, 1750114 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, Z.F., Ding, T.R., Huang, W.Z., Dong, Z.X.: Qualitative theory of differential equations, Translations of mathematical monographs. American Mathematical Society. Providence 101,(1992)

Download references

Acknowledgements

The work of Fan is supported by a NSFC Grant No. 11701155, and NSF of Henan Normal University, Grant No. 2021PL04. The work of Gao is partially supported by NSFC Grant No. 12171084 and the fundamental Research Funds for the Central Universities. The work of Li is partially supported by NSFC Grant No. 12101072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Gao.

Additional information

Communicated by Michael Ward.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For the sake of completeness, we present Kato’s theorem in this section. We begin by fixing some notations. Let A be an operator. We denote D(A) the domain of the operator A, and \(\Vert \cdot \Vert _{X}\) the norm of the Banach space X.

Consider the abstract quasilinear equation,

$$\begin{aligned} \left\{ \begin{array}{l} \frac{dv}{dt}+A(t,v)v=f(t,v),\; t\ge 0,\\ v(0)=v_0. \end{array}\right. \end{aligned}$$
(5.1)

Let X and Y be Hilbert spaces, such that Y is continuously and densely embedded in X, and let \(Q:Y\rightarrow X\) be a topological isomorphism. Let L(YX) denote the space of all bounded linear operators from Y to X (L(X), if \(X=Y\)). Assume that

(i) For each \(t \ge 0 ,A(t,y)\in L(Y,X)\) for \( y \in X\) with

$$\begin{aligned} \Vert (A(t,y)-A(t,z))w\Vert _X \le \mu _1\Vert y-z\Vert _X\Vert w\Vert _Y,\;t\ge 0,y,z,w\in Y, \end{aligned}$$

and \(A(t,y)\in G(X,1,\beta )\) (i.e., A(ty) is quasi-m-accretive), uniformly on bounded sets in Y.

(ii) \(QA(t,y)Q^{-1}=A(t,y)+B(t,y)\), where \(B(t,y)\in L(X)\) is bounded for each \(t\ge 0\), uniformly on bounded sets in Y. Moreover,

$$\begin{aligned} \Vert (B(t,y)-B(t,z))w\Vert _X \le \mu _2\Vert y-z\Vert _Y\Vert w\Vert _X,\;t\ge 0,y,z\;\in Y,w\;\in X. \end{aligned}$$

(iii) For each \(y\in Y\), \(t\mapsto f(t,y)\) is continuous on \([0,+\infty )\). For each \(t\ge 0\), \(f(t,y):Y \rightarrow Y\) and extends also to a map from X into X. f is uniformly bounded on bounded sets in Y, and

$$\begin{aligned} \Vert (f(t,y)-f(t,z))\Vert _Y \le \mu _3\Vert y-z\Vert _Y,\;t\ge 0,y,z\;\in Y, \end{aligned}$$
$$\begin{aligned} \displaystyle \Vert (f(t,y)-f(t,z))\Vert _X \le \mu _4\Vert y-z\Vert _X,\;t\ge 0,y,z,\;\in X. \end{aligned}$$

Here, \(\mu _1\), \(\mu _2\), \(\mu _3\), and \(\mu _4\) are constants depending only on max\(\{\Vert y\Vert _Y,\Vert z\Vert _Y\}\).

Theorem 5.1

(Kato’s Theorem) (Kato 1975) If assumptions (i)–(iii) hold, given \(v_0\in Y\), there is a maximal \(T>0\) depending only on \(\Vert v_0\Vert _Y\) and a unique solution v to Eq. (5.1), such that

$$\begin{aligned} v=v(.;v_0)\;\in \;C([0,T);Y)\cap C^1([0,T);X). \end{aligned}$$

Moreover, the map \(v_0\mapsto v(.;v_0)\) is continuous from Y to \(C([0,T);Y)\cap C^1([0,T);X)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Gao, H. & Li, H. On the Geophysical Green-Naghdi System. J Nonlinear Sci 32, 21 (2022). https://doi.org/10.1007/s00332-021-09773-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-021-09773-7

Keywords

Mathematics Subject Classification