Skip to main content
Log in

Instability and Nonuniqueness for the b-Novikov Equation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The b-Novikov equation is a one-parameter family of Camassa–Holm-type equations with cubic nonlinearities that possess multipeakon traveling wave solutions and for \(b=3\) gives the well known Novikov equation, which is integrable. Here, using appropriate two-peakon solutions, instability and nonuniqueness for the initial value problem of the b-Novikov equation is studied when the initial data belong in Sobolev spaces \(H^s\), \(s < 3/2\), on both the line and the circle. The rectangular region of the bs-plane defined by \(b>2\) and \(s<3/2\) is divided into three subregions. The subregion that is below the line segment \(s = 2-\frac{b}{4}\), \(2<b < 4\), is characterized by the phenomenon of nonuniqueness. Then, to the right of this subregion the phenomenon of norm inflation occurs, which leads to instability and discontinuity of the solution map. However, on the segment \(s = 2-\frac{b}{4}\), \(2<b < 4\), either nonuniqueness or discontinuity may occur. All these are proved by constructing appropriate two-peakon solutions with arbitrary small initial size data that collide in arbitrary small time T. These solutions may become arbitrarily large near T. For \(b\le 2\), the two-peakon solutions do not work since there is no collision. Finally, it is well known that for \(s>3/2\) there is well-posedness no matter what is the value of b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Birnir, B., Kenig, C., Ponce, G., Svanstedt, N., Vega, L.: On the ill-posedness of the IVP for the generalized Korteweg–de Vries and nonlinear Schrödinger equations. J. Lond. Math. Soc. 53(3), 551–559 (1996)

    Article  MATH  Google Scholar 

  • Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part II: The KdV equation. Geom. Funct. Anal. 3(3), 209–262 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Bourgain, J., Li, D.: Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces. Invent. math. 201, 97–157 (2015a)

  • Bourgain, J., Li, D.: Strong illposedness of the incompressible Euler equation in integer \(C^m\) spaces. Geom. Funct. Anal. 25, 1–86 (2015b)

  • Bourgain, J., Li, D.: Galilean boost and non-uniform continuity for incompressible Euler. Commun. Math. Phys. 372(1), 261–280 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Bourgain, J., Pavlovic, N.: Ill-posedness of the Navier–Stokes equations in a critical space in 3D. J. Funct. Anal. 255(9), 2233–2247 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Bressan, A., Constantin, A.: Global conservative solutions of the Camassa–Holm equation. Arch. Rat. Mech. Anal. 183, 215–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Cao, C., Holm, D., Titi, E.: Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models. J. Dyn. Differ. Equ. 16(1), 167–178 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Choffrut, A., Pocovnicu, O.: Ill-posedness of the cubic nonlinear half-wave equation and other fractional NLS on the real line. Int. Math. Res. Not. IMRN 3, 699–738 (2018)

    MathSciNet  MATH  Google Scholar 

  • Christ, M., Colliander, J., Tao, T.: Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. Am. J. Math. 125(6), 1235–1293 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Sharp global well posedness for KdV and modified KdV on \({\mathbb{R}}\) and \({\mathbb{T}}\). J. AMS 16(3), 705–749 (2003)

    MathSciNet  MATH  Google Scholar 

  • Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192(1), 165–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, A., McKean, H.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52, 949–982 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, A., Strauss, W.: Stability of the Camassa–Holm solitons. J. Nonlinear Sci. 12, 415–422 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Degasperis, A., Procesi, M.: Asymptotic integrability. In: Symmetry and Perturbation Theory, 1998, pp. 23–37. World Science Publications, Rome (1999)

  • Degasperis, A., Holm, D.D., Hone, A.N.W.: A new integral equation with peakon solutions. Theor. Math. Phys. 133, 1463–1474 (2002)

    Article  Google Scholar 

  • Dullin, H., Gottwald, G., Holm, D.: An integrable shallow water equation with linear and nonlinear dispersion. Phys. Rev. Lett. 87, 4501–4504 (2001)

    Article  Google Scholar 

  • Ehrnström, M., Escher, J., Pei, L.: A Note on the Local Well-Posedness for the Whitham Equation. (English Summary) Elliptic and Parabolic Equations, Springer Proceedings in Mathematics and Statistics, vol. 119, pp. 63–75. Springer, Cham (2015)

  • Escher, J., Yin, Z.: Well-posedness, blow-up phenomena, and global solutions for the \(b\)-equation. J. Reine Angew. Math. 624, 51–80 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Escher, J., Liu, Y., Yin, Z.: Shock waves and blow-up phenomena for the periodic Degasperis–Procesi equation. Indiana Univ. Math. J. 56, 87–117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Fokas, A., Fuchssteiner, B.: Symplectic Structures, their Bäcklund Transformations and Hereditary Symmetries. Phys. D 4, 47–66 (1981/82)

  • Georgiev, V., Tzvetkov, N., Visciglia, N.: On the regularity of the flow map associated with the 1D cubic periodic half-wave equation. Diff. Integral Equ. 29(1/2), 183–200 (2016)

    MathSciNet  MATH  Google Scholar 

  • Gérard, P., Lenzmann, E., Pocovnicu, O., Raphaël, P.: A two-soliton with transient turbulent regime for the cubic half-wave equation on the real line. Ann. PDE 4(1), Paper No. 7 (2018)

  • Grayshan, K., Himonas, A.: Equations with peakon traveling wave solutions. Adv. Dyn. Syst. Appl. 8(2), 217–232 (2013)

    MathSciNet  Google Scholar 

  • Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Dover Publications, New York (1953)

    Book  MATH  Google Scholar 

  • Himonas, A., Holliman, C.: On well-posedness of the Degasperis–Procesi equation. Discrete Contin. Dyn. Syst. 31(2), 469–488 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Himonas, A., Holliman, C.: The Cauchy problem for the Novikov equation. Nonlinearity 25, 449–479 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Himonas, A., Holliman, C.: The Cauchy problem for a generalized Camassa–Holm equation. Adv. Differ. Equ. 19(1–2), 161–200 (2014)

    MathSciNet  MATH  Google Scholar 

  • Himonas, A., Kenig, C.: Non-uniform dependence on initial data for the CH equation on the line. Differ. Integral Equ. 22, 201–224 (2009)

    MathSciNet  MATH  Google Scholar 

  • Himonas, A., Matzavinos, D.: An \(ab\)-family of equations with peakon traveling waves. Proc. Am. Math. Soc. 144(9), 3797–3811 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Himonas, A., Misiołek, G.: Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics. Commun. Math. Phys. 296, 285–301 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Himonas, A., Misiołek, G., Ponce, G.: Non-uniform continuity in \(H^1\) of the solution map of the CH equation. Asian J. Math. 11, 141–150 (2007a)

    Article  MathSciNet  MATH  Google Scholar 

  • Himonas, A., Misiołek, G., Ponce, G., Zhou, Y.: Persistence properties and unique continuation of solutions of the Camassa–Holm equation. Commun. Math. Phys. 271, 511–522 (2007b)

    Article  MathSciNet  MATH  Google Scholar 

  • Himonas, A., Kenig, C., Misiołek, G.: Non-uniform dependence for the periodic CH equation. Commun. Partial Differ. Equ. 35, 1145–1162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Himonas, A., Holliman, C., Grayshan, K.: Norm inflation and ill-posedness for the Degasperis–Procesi equation. Commun. Partial Differ. Equ. 39, 2198–2215 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Himonas, A., Grayshan, K., Holliman, C.: Ill-posedness for the \(b\)-family of equations. J. Nonlinear Sci. 26, 1175–1190 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Himonas, A., Holliman, C., Kenig, C.: Construction of 2-peakon solutions and ill-posedness for the Novikov equation. SIAM J. Math. Anal. 50(3), 2968–3006 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Holm, D., Staley, M.: Wave structure and nonlinear balances in a family of evolutionary PDEs. SIAM J. Appl. Dyn. Syst. 2(3), 323–380 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Holm, D., Staley, M.: Wave structures and nonlinear balances in a family of 1+1 evolutionary PDEs. Phys. Lett. A 308(5–6), 437–444 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Hone, A., Wang, J.: Integrable peakon equations with cubic nonlinearity. J. Phys. A Math. Theor. 41, 372002 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Hone, A., Lundmark, H., Szmigielski, J.: Explicit multipeakon solutions of Novikov’s cubically nonlinear integrable Camassa–Holm type equation. Dyn. PDE 6, 253–289 (2009)

    MathSciNet  MATH  Google Scholar 

  • Iwabuchi, T., Ogawa, T.: Ill-posedness for the nonlinear Schrödinger equation with quadratic non-linearity in low dimensions. Trans. Am. Math. Soc. 367(4), 2613–2630 (2015)

    Article  MATH  Google Scholar 

  • Kalisch, H., Lenells, J.: Numerical study of traveling-wave solutions for the Camassa–Holm equation. Chaos Solitons Fractals 25(2), 287–298 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Kenig, C.E., Ponce, G., Vega, L.: A bilinear estimate with applications to the KdV equation. J. AMS 9(2), 571–603 (1996)

    MathSciNet  MATH  Google Scholar 

  • Kenig, C., Ponce, G., Vega, L.: On the ill-posedness of some canonical dispersive equations. Duke Math. J. 106(3), 617–633 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Kishimoto, N.: A remark on norm inflation for nonlinear Schrödinger equations. Commun. Pure Appl. Anal. 18(3), 1375–1402 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Lenells, J.: Traveling wave solutions of the Camassa–Holm equation. J. Differ. Equ. 217(2), 393–430 (2005a)

  • Lenells, J.: Traveling wave solutions of the Degasperis–Procesi equation. J. Math. Anal. Appl. 306(1), 72–82 (2005b)

  • Li, Y., Olver, P.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. 162, 27–63 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Lundmark, H., Szmigielski, J.: Multi-peakon solutions of the Degasperis–Procesi equation. Inverse Probl. 19, 1241–1245 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Machihara, S., Okamoto, M.: Sharp well-posedness and ill-posedness for the Chern–Simons–Dirac system in one dimension. Int. Math. Res. Not. IMRN 6, 1640–1694 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • McKean, H.P.: Breakdown of the Camassa–Holm equation. Commun. Pure Appl. Math. 57, 416–418 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Mikhailov, A., Novikov, V.: Perturbative symmetry approach. J. Phys. A 35(22), 4775–4790 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Novikov, V.: Generalizations of the Camassa–Holm equation. J. Phys. A 42, 342002 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Oh, T.: A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces. Funkcial. Ekvac. 60, 259–277 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Pocovnicu, O.: Explicit formula for the solution of the Szegö equation on the real line and applications. Discrete Contin. Dyn. Syst. 31(3), 607–649 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Tiglay, F.: The periodic Cauchy problem for Novikov’s equation. Int. Math. Res. Not. 20, 4633–4648 (2011)

    MathSciNet  MATH  Google Scholar 

  • Whitham, G.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a Grant from the Simons Foundation (#524469 to Alex Himonas). The authors thank the referees for their detailed and constructive comments that improved the readability of the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Alexandrou Himonas.

Ethics declarations

Conflict of interest

On behalf of both authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Peter Miller.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Himonas, A.A., Holliman, C. Instability and Nonuniqueness for the b-Novikov Equation. J Nonlinear Sci 32, 46 (2022). https://doi.org/10.1007/s00332-022-09798-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-022-09798-6

Keywords

Mathematics Subject Classification

Navigation