Skip to main content
Log in

Stability of Regular Polygonal Relative Equilibria on \(\mathbf{}\mathbb S^2\)

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

For the regular polygonal relative equilibria on \(\mathbb S^2\), we show that if all the particles are outside of the equator, then they are orbitally stable in a four-dimensional invariant symplectic manifold. For the stability in full space, if they are close to the north or south pole, then such relative equilibria are spectrally unstable. If they are close to the equator, then if the number of masses is odd, then they are orbitally stable; and if the number of masses is even, then they are spectrally unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Mathematica’s numerical solver works better on algebraic than on transcendental functions. This is one reason for doing the present analysis using \( \mu _n (x) \) instead of \( \lambda _{ p + 1 } \).

References

  • Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical aspects of classical and celestial mechanics. [Dynamical systems. III], Translated from the Russian original by E. Khukhro, 3rd edition, Encyclopaedia of Mathematical Sciences, 3. Springer, Berlin (2006)

  • Borisov, A.V., Mamaev, I.S., Kilin, A.A.: Two-body problem on a sphere. Reduction, stochasticity, periodic orbits. Regul. Chaotic Dyn. 9(3), 265–279 (2004)

    Article  MathSciNet  Google Scholar 

  • Borisov, A.V., García-Naranjo, L.C., Mamaev, I.S., Montaldi, J.: Reduction and relative equilibria for the two-body problem on spaces of constant curvature. Celest. Mech. Dyn. Astron. 130(6), 1–36 (2018)

    Article  MathSciNet  Google Scholar 

  • Burnside, W.S., Panton, A.R.: Theory of Equations. Dublin University Press, Dublin (1899)

    MATH  Google Scholar 

  • Deng, Y., Zhu, S.: Odd index of the amended potential implies linear instability, arXiv:2106.06246v1

  • Diacu, F.: Polygonal homographic orbits of the curved N-body problem. Trans. Am. Math. Soc. 364(5), 2783–2802 (2012)

    Article  MathSciNet  Google Scholar 

  • Diacu, F.: Relative equilibria of the 3-dimensional curved \(n\)-body problem. Mem. Am. Math. Soc. 228, 1071 (2013)

    MathSciNet  Google Scholar 

  • Diacu, F., Pérez-Chavela, E.: Homographic solutions of the curved 3-body problem. J. Differ. Equ. 250(1), 340–366 (2011)

    Article  MathSciNet  Google Scholar 

  • Diacu, F., Zhu, S.: Almost all 3-body relative equilibria are inclined. Discrete Contin. Dyn. Syst. Ser. S 13(4), 1131–1143 (2020)

    MathSciNet  MATH  Google Scholar 

  • Diacu, F., Pérez-Chavela, E., Santoprete, M.: The \(n\)-body problem in spaces of constant curvature: part I, relative equilibria. J. Nonlinear Sci. 22(2), 247–266 (2012)

    Article  MathSciNet  Google Scholar 

  • Diacu, F., Martínez, R., Pérez-Chavela, E., Simó, J.C.: On the stability of tetrahedral relative equilibria in the positively curved 4-body problem. Physica D 256(257), 21–35 (2013)

    Article  MathSciNet  Google Scholar 

  • Diacu, F., Sánchez-Cerritos, J.M., Zhu, S.: Stability of fixed points and associated relative equilibria of the 3-body problem on \({\mathbb{S}}^1\) and \({\mathbb{S}}^2\). J. Dyn. Differ. Equ. 30(1), 209–225 (2018a). Modification after publication at arXiv:1603.03339

  • Diacu, F., Stoica, C., Zhu, S.: Central configurations of the curved \(n\)-body problem. J. Nonlinear Sci. 28(5), 1999–2046 (2018b)

    Article  MathSciNet  Google Scholar 

  • García-Naranjo, L.C., Marrero, J.C., Pérez-Chavela, E., Rodríguez-Olmos, M.: Classification and stability of relative equilibria for the two-body problem in the hyperbolic space of dimension 2. J. Differ. Equ. 260(7), 6375–6404 (2016)

    Article  MathSciNet  Google Scholar 

  • Marsden, J.: Lectures on mechanics. In: London Mathematical Society Lecture Note Series, vol. 174. Cambridge University Press, Cambridge (1992)

  • Martínez, R., Simó, J.C.: On the stability of the Lagrangian homographic solutions in a curved three-body problem on \({\mathbb{S}}^2\). Discrete Contin. Dyn. Syst. 33(3), 1157–1175 (2013)

    Article  MathSciNet  Google Scholar 

  • Martínez, R., Simó, C.: Relative equilibria of the restricted three-body problem in curved spaces. Celest. Mech. Dyn. Astron. 128(2–3), 221–259 (2017)

    Article  MathSciNet  Google Scholar 

  • Moeckel, R.: Linear stability analysis of some symmetrical classes of relative equilibria. In: Hamiltonian Dynamical Systems (Cincinnati, OH, 1992) (IMA Vol. Math. Appl. vol. 63), pp. 291–317. Springer, New York

  • Newton, P.K., Ostrovskyi, V.: Energy-momentum stability of icosahedral configurations of point vortices on a sphere. J. Nonlinear Sci. 22, 499–515 (2012)

    Article  MathSciNet  Google Scholar 

  • Pekarsky, S., Marsden, J.E.: Point vortices on a sphere: stability of relative equilibria. J. Math. Phys. 39(11), 5894–5907 (1998)

    Article  MathSciNet  Google Scholar 

  • Pérez-Chavela, E., Sánchez-Cerritos, J.M.: Euler-type relative equilibria and their stability in spaces of constant curvature. Can. J. Math. 70(2), 426–450 (2018)

    Article  MathSciNet  Google Scholar 

  • Pérez-Chavela, E., Sánchez-Cerritos, J.M.: Hyperbolic relative equilibria for the negative curved \(n\)-body problem. Commun. Nonlinear Sci. Numer. Simul. 67, 460–479 (2019)

    Article  MathSciNet  Google Scholar 

  • Roberts, G.E.: Spectral instability of relative equilibria in the planar n-body problem. Nonlinearity 12(4), 757–769 (1999)

    Article  MathSciNet  Google Scholar 

  • Schmah, T., Stoica, C.: Stability for Lagrangian relative equilibria of three-point-mass systems. J. Phys. A 39(46), 14405–14425 (2006)

    Article  MathSciNet  Google Scholar 

  • Simo, J.C., Lewis, D., Marsden, J.E.: Stability of relative equilibria. I. The reduced energy-momentum method. Arch. Ration. Mech. Anal. 115(1), 15–59 (1991)

    Article  MathSciNet  Google Scholar 

  • Stoica, C.: On the \(n\)-body problem on surfaces of revolution. J. Differ. Equ. 264(10), 6191–6225 (2018)

    Article  MathSciNet  Google Scholar 

  • Wolfram Research, Inc. Mathematica, version 11.3 (2018)

  • Yu, X., Zhu, S.: Regular polygonal equilibrium configurations on \({\mathbb{S} }^1\) and stability of the associated relative equilibria. J. Dyn. Differ. Equ. 33(2), 1071–1086 (2021)

    Article  Google Scholar 

  • Zhu, S.: Compactness and index of ordinary central configurations for the curved \(N\)-body problem. Regul. Chaotic Dyn. 26(3), 236–257 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research has been partially supported by Asociación Mexicana de Cultura A.C.. The first two authors were also supported by CONACYT México, project A1S10112. The third author would like to acknowledge NSFC (No. 11801537), China Scholarship Council (CSC NO. 201806345013), and Instituto Tecnológico Autónomo de México for their warm hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqiang Zhu.

Additional information

Communicated by Paul Newton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Positivity of \( \lambda _{ p + 1 } \)

Appendix A. Positivity of \( \lambda _{ p + 1 } \)

This “Appendix” offers a numerical study of \( \lambda _{ p+1 } \), supporting the claim that it is positive for all \( n \ge 6 \), n even. Recall that \( \lambda _{ p + 1 } \) is given by (16), with \( n = 2p + 2 \). Thus, \( \lambda _{ p + 1 } (\theta ) \) is a continuous function of \(\theta \) on the open interval \( 0< \theta < \pi / 2 \).

Consider the family of algebraic functions \( \mu _n (x) \), \( x \in (0,1) \), defined by

$$\begin{aligned} \lambda _{ p + 1 } (\theta ) = \mu _{2(p+1)} (\cos ^2 \theta ) = \mu _n (\cos ^2 \theta ) \,. \end{aligned}$$

(That is to say, \( \mu _n \) is obtained from the right-hand side of (16) substituting \( \cos \theta \) with \( \sqrt{x} \) and \( \sin \theta \) with \( \sqrt{1-x} \).) We want to determine the qualitative shape of \( \mu _n (x) \). It turns out that \( \mu _n (x) \) blows-up at the two ends of the interval (0, 1) ; indeed, \( \mu _n (x) \) is \( O(x ^{ -3/2 }) \) near \( x = 0 \) and \( O((1 - x) ^{ -3/2 }) \) near \( x = 1 \). To see this, we start by discussing the limit \( x \rightarrow 0 \) (i.e., \( \theta \rightarrow \pi / 2 \)), which is known to be \(+\infty \) by Proposition 6.

Table 1 Coefficients \( \mathfrak {b} _n \) refereed to in Proposition 15

Proposition 14

Near \( x = 0 \), \( \mu _n (x) = x ^{ -3/2 } (\mathfrak {a} _n + \mu _n ^L (x)) \), \( \mathfrak {a}_n > 0 \), for some continuous functions \( \mu _n ^L \) defined on \( [0, \epsilon ) \), \( 0< \epsilon < 1 \), satisfying \( \mu _n ^L (0) = 0 \).

Proof

It suffices to show that \( \lim _{ x \rightarrow 0 } x ^{ 3/2 } \mu _n (x) =\mathfrak {a}_n> 0 \). Recall that

$$\begin{aligned} \sin ^2 d_{nk}=\sin ^2\theta (1-\cos k\phi ) [2-\sin ^2 \theta (1-\cos k\phi )]. \end{aligned}$$

As \( \theta \rightarrow \pi / 2 \), \(\sin ^2d_{nk}, k\ne n\) remains positive except for \(k=\frac{n}{2}\). Thus, all the terms in the two summations on the right-hand-side of (16) remain bounded as \( \theta \rightarrow \pi /2 \) (i.e., \( x \rightarrow 0 \)), except for the one term corresponding to \(k=\frac{n}{2}\). Then, if \( n = 4l \), \( l \in \mathbb {N} \), we have

$$\begin{aligned} \lim _{ x \rightarrow 0 } x ^{ 3/2 } \mu _n (x) =&\lim _{ \theta \rightarrow \pi /2} \frac{ -24\cos 2\theta \cos ^5\theta \sin ^2\theta }{\sin ^5 d_{n,n/2}}\\ =&\lim _{ \theta \rightarrow \pi /2} \frac{ -24\cos 2\theta \cos ^5\theta \sin ^2\theta }{ 32 \cos ^5\theta \sin ^5\theta }=\frac{3}{4}. \end{aligned}$$

Similarly, \( n = 4l+2 \), \( l \in \mathbb {N} \), we have \(\lim _{ x \rightarrow 0 } x ^{ 3/2 } \mu _n (x) =\frac{1}{4}.\) Thus, the claim follows. \(\square \)

Proposition 15

Near \( x = 1 \), \( \mu _n (x) = (1-x) ^{ -3/2 } (\mathfrak {b} _n + \mu _n ^R (x)) \), for some continuous function \( \mu _n ^R \) defined on \( (1-\epsilon , 1] \), \( 0< \epsilon < 1 \), with \( \mu _n ^R (0) = 0 \). Moreover, \( \mathfrak {b} _4 < 0 \) and \( \mathfrak {b} _n > 0 \) for all \( n > 4 \), \( n \in 2 \mathbb {N} \).

Fig. 2
figure 2

Shown in (a) are the minimum values of \( \mu _n (x) \). Sample plots of \( \mu _n (x) \) shown in (b), (c) and (d)

In lieu of a proof for Proposition 15, we offer the numerical evidence presented in Table 1, where we compute \( \mathfrak {b} _n = \lim _{ x \rightarrow 1^{-} } (1-x) ^{ 3/2 } \mu _n (x) \) for \( n = 4, 8, \ldots , 32 \). Note that \( \mathfrak {b} _4 \) is the only negative number in the column.

It follows from Propositions 14 and 15, and the intermediate value theorem, that there is at least one root of \( \mu _4 (x) \) on the interval (0, 1) . Using Mathematica’s numerical solverFootnote 1 (Wolfram Research, Inc. 2018), it is verified that there is exactly one root \( x _4 ^*\in (0,1) \), \( x _4 ^*\approx 0.70787\), (or \(\theta \approx 0.571\), see Section 5.4). Thus, \( \mu _4 (x) > 0 \) for \( x \in (0, x _4 ^*) \) and \( \mu _4 (x) < 0 \) for \( x \in (x _4 ^*, 1) \). On the other hand,

Proposition 16

For \( n > 4 \), \( n \in 2 \mathbb {N} \), \( \mu _n (x) \) is strictly positive on the interval (0, 1) .

Again, in lieu of a proof, we offer the numerical evidence provided by Table 1. Using Mathematica’s numerical solver, we computed the critical points \( x _n \) of \( \mu _n (x) \) and verified that there is exactly one such critical point on the interval (0, 1) for each \( n = 6, 8, \ldots , 32 \). In the last column, we compute the corresponding critical values, all of them strictly positive. Propositions 14 and 15 then imply that such critical values are absolute minima on the interval (0, 1) . Note that these minima appear to be increasing as \( n \rightarrow \infty \); the trend is shown in Fig. 2a for \( n = 6, 8, \ldots , 64 \). Figure 2b–d illustrate the graphs of \( \mu _n (x) \) for \( n = 4, 6, 12 \).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Garduño, A., Pérez-Chavela, E. & Zhu, S. Stability of Regular Polygonal Relative Equilibria on \(\mathbf{}\mathbb S^2\). J Nonlinear Sci 32, 73 (2022). https://doi.org/10.1007/s00332-022-09824-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-022-09824-7

Keywords

Mathematics Subject Classification

Navigation