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Abstract

Modeling social interactions is a challenging task that requires flexible frameworks. For
instance, dissimulation and externalities are relevant features influencing such systems —
elements that are often neglected in popular models. This paper is devoted to investigating
general mathematical frameworks for understanding social situations where agents dissimu-
late, and may be sensitive to exogenous objective information. Our model comprises a pop-
ulation where the participants can be honest, persuasive, or conforming. Firstly, we consider
a non-cooperative setting, where we establish existence, uniqueness and some properties of
the Nash equilibria of the game. Secondly, we analyze a cooperative setting, identifying
optimal strategies within the Pareto front. In both cases, we develop numerical algorithms
allowing us to computationally assess the behavior of our models under various settings.

Keywords: Opinion dynamics; Dissimulation; Exogenous influence; Non-cooperative games;
Cooperative games

AMS Subject Classification: 91D15, 49N70, 34H05

1 Introduction

In this paper, we investigate the following problem: what are the dynamics that a social system
can attain as a result of interactions among the agents comprising it? Here, the subjects of
our investigations are judgments — opinions, suspicions, and doubts — on various matters,
upon which we wish to predicate dynamical and equilibria considerations. The main distinctive
aspects of this work are the presence of dissimulation, and the influence of exogenous objective
information on the behavior of the system’s agents. We will work under the hypothesis of
rationality of the agents, and the material causes for their reasoning are: (i) apprehension from
their social interactions; (ii) cognitive pressures; (iii) effects individuals observe as consequence
of their (aggregate) actions on the environment they are in.
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Our modeling viewpoint is similar to that of Sakoda (see [33], p.p. 13-15)1 relative to his checker-
board model. We will investigate general settings — competitive and cooperative — envisaging
to shed some light on the problem of dynamical social interactions under dissimulation, as well
as the influence of exogenous objective information upon such a system. Therefore, for concrete-
ness, we fix a specific manner in which these aspects are incorporated. However, we advocate
that our approach is flexible, allowing for modifications to capture idiosyncrasies of particular
systems. Our results do not intend themselves to be predictive; rather, we expect they can be
useful as possible starting points for explanations of some real-world social situations.

Furthermore, when postulating the specific way we would expect people to dissimulate, we take
into account that they can have distinct tempers. Our classification is that individuals are
either persuasive, truthful or conforming within the population. Truthful individuals always
aim to express judgments which are closer to what they truly think on the matter in question.
However, there are many reasons that imply dissimulate behavior. For instance, it is doubtless
to say that influencing on others’ judgments is a problem of major interest. Political decisions
are fundamentally dependent on solving it, and the goal of any company’s marketing sector is
to convince people that their product is worth buying. We will refer to the type of agents trying
to influence others as the persuasive ones.

There are some efforts focused on persuasive behavior in the literature. In the work [14], there
is a study of optimal strategies for a sponsor that must convince a qualified majority to have her
proposal accept. See [17] for an investigation of a similar problem, now involving an advisor and
a decision maker. In the paper [46], authors consider a framework with three persuaders. Two
of them are in opposite extremes, the third of which is in the center. Each persuader targets
some agent to try to exert his influence upon him, thus influencing the whole network towards
his personal judgment.

Alternatively, as a result of social pressures, or due to being more passive or indecisive when
making decisions, some individuals express judgments that are distinct of their actual ones
simply to conform with their group. There are plenty of empirical evidence that, in many
circumstances, people do behave in this way. In effect, in the popular experiment carried out
in [2], people misjudged the length of vertical lines supposedly pressured by collaborators figuring
as other participants. When asked, some of them confessed that their mistake was due to the
discomfort of not conforming.

We can understand truth as the adequation of the things and the mind.2 From this viewpoint,
although social interactions effectively cause individuals to change their judgments and choices,

1More precisely, the quotation we refer to is:

“The checkerboard model in its present form is more of a basic conceptual framework than a model
of any given social situation. It has potentiality for further elaboration to fit particular situations.
As it now stands, it can be used as a visual representation of the social interaction process, relating
attitudes, social interaction and social structure. It should be particularly useful in introductory
courses, not only illustrating the relationship among these concepts, but also in discussing the
function of models. A model is not necessarily used to predict behavior in a situation. Model
building is useful in clarifying the definition of concepts and the relationship among them. Left
in verbal form, concepts can be elusive in meaning, whereas computerization require precision in
definition of terms. Models can be used to gain insight into basic principles of behavior rather than
in finding precise predictions of results for a given social situation, and it is this function which the
checkerboard model in its present form provides (. . . ). The checkerboard model provides students
of social structure with a possible explanation of its dynamics.”

2According to Western metaphysical tradition, “Veritas est adaequatio rei et intellectus”, see St. Thomas
Aquinas’ De Veritate, Q.1, A.1-4.
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it is relevant to assume in some way that the members of the population consider exogenous
objective information, acquired via their interactions with perceived reality. In effect, facing
proper indications, even an truthful person can express judgments that differ from their real
ones, say for prudence. As people exchange their views, they will act upon their environment,
changing it — we propose here to assess how this modification feeds back into individual actions.
In this direction, pertinent questions arise — possibly of particular relevance nowadays — such
as whether rational social interactions can lead to consensus that we would regard as incorrect
from an objective viewpoint.3

There are some psychological reasons that can affect the reaction of a person to objective in-
formation. For instance, there is confirmation bias, which refers to a tendency to favor (respec-
tively, avoid) information that somehow agrees (respectively, go against) prior beliefs, values
etc., see [43]. In this context, the discredit of the source of information is a related issue. Also,
when expressing a judgment which deviates from her true one, the agent incurs in a psycholog-
ical stress, akin to the process of cognitive dissonance, see [27]. Some that replied wrongly to
the experiment of [2] said that they were genuinely convinced of their wrong answer. This is a
common effect of cognitive dissonance, as individuals strive for consistency.

With sociological roots in [28,32], DeGroot pioneered naïve learning models of opinion formation
in the seminal work [20]. Taking place in a discrete-time setting, it consists of stipulating that
a given agent’s judgment at a period is updated by a weighted average of the ones of the
previous period. In the economics literature, the authors of [21] employed a naïve learning
model to investigate the effect of the failure of agents to account for repetitions, what they
called persuasion bias. In [29], they study the phenomenon of wisdom of the crowds in this
model. Among further efforts on naïve learning, we mention the investigation of its relations
with cooperation, see [39], the analysis of the effect of Bayesian agents amidst a population of
bounded rational individuals, see [42], and the question of manipulation, see [5].

A key development of the DeGroot model is the celebrated Bounded Confidence (BC) model of
Hegselmann and Krause, see [36], and also [38] for noteworthy mathematical advancements in
this setting. The continuous-time model of naïve learning comprises a straightforward extension,
see [9, 16]. There are many advances based on the BC modeling setups. In [34, 37], they regard
individuals to be sensible to external information. When considering the action of a leader upon
the population, some works taking following a control-theoretical perspective are [11, 22, 48].
The recent work [31] presents results in a modified BC model with stubbornness as a type
of persistence. The paper [8] regards a Mean-Field Game (MFG) model account for external
disturbances and random noise, in such a way that, in a certain sense, the resulting strategies are
robust with respect to uncertainty. We also refer to the paper [19] for an MFG model studying
long-time dynamics of an opinion formation framework. In these references, authors assume
that the expressed judgments coincide with the real ones. A recent advance, in this context,
concerns the BC model, namely, the effect of mis- and disinformation on it, see [23].

The closest works to the present one in the literature are [13] and [26]. In the former, agents can
be conforming, counter-conforming or truthful; in this connection, see also [4] for an alterna-
tive approach to conformity. They build upon the DeGroot model, whence it is a discrete-time
framework. Moreover, judgments are one-dimensional, the optimization determining the ex-
pressed judgment of an agent is static, and their model does not include the effect of objective
information in the dynamics of the population. In the latter, they propose a number of discrete-
time game dynamics where the expressed judgment of each agents can be either binary or come

3E.g., when a vaccine for a given disease is proven effective, can we observe an anti-vaccine consensus?
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from a continuum. In this dynamics, the behavior of agents range from manipulative to con-
formist.

Here, we consider a continuous-time model akin to the BC one. We work under the framework
of control theory, stipulating performance criteria for each of the individuals determining their
behavior as a result of some notion of equilibrium for the corresponding game. In this framework,
we can allow for players to react to external signals.

We now mention a few works treating problems that are related to ours from a distinct modeling
viewpoint. In [24,25], we find alternative approaches to social learning. The work [10] comprises
a general study of static linear models. The paper [15] develops an analysis of unemployment
via a mechanism of information exchange within a network. Two recent approaches to social
learning are [1], with random networks, and [41], which accounts for the reaction to learning
from private signals with a focus on static equilibria. Under Bayesian learning and influence of
external information, in the work [45] there is an analysis of emergence of consensus.

Our model comprises a finite population of strategically interacting individuals. Each player has
a multidimensional true judgment on a variety of matters, and chooses to express another one
that can possibly deviate from it. The expressed judgment is determined by each player according
to her objective criteria; see [3] for the application of a related idea in pedestrian dynamics. In
this context, the agents assess their performance via functionals that are constituted of two
parts. One of them regards differences between the expressed judgment and two quantities: the
true judgment, akin to a cognitive dissonance stress; the average population judgment, which
models the behavior (either persuasive or conforming) of the corresponding agent. The other
piece forming the functional is through where we introduce the effect of objective information
in the game. The state variables evolve in time as a result of the interaction of each player with
the expressed judgments profile of the population.

We consider two distinct settings. The first one is a competitive game. We prove the existence
of Nash equilibrium, and that it is in fact unique under suitable assumptions. This is a natural
notion of equilibrium, e.g., if we think agents are continuously debating and trying to convince
one another, in a accordance to what suits their nature. We provide some numerical illustrations
to showcase the rather rich dynamics we obtain resulting from the various possible configurations,
departing from the same initial judgments profile. The second framework we investigate is the
one in which players cooperate. We are able to characterize the Pareto front, and also numerically
illustrate the resulting strategies that are optimal in this sense. Understanding cooperative
formation can shed light, e.g., in the study of legislative bargaining, see [30]. The latter setting
seems to be reasonable for making conceptual considerations on this problem.

We organize the remainder of this paper as follows. In Section 2, we present the technical aspects
of the model, such as the evolution of the state variables, and the performance criteria of the
individuals in the population. We also provide some well-posedness results that will be of major
importance in the work. Then, we consider the competitive setting in Section 3, characterizing
the appropriate equilibria, and discussing the asymptotic behavior of them. Then, in Section 4
we provide a numerical algorithm of the equilibria we previously found, and also present many
experiments of possible configurations that we can attain. In Section 5 we proceed in a similar
manner, but supposing that agents among the population cooperate. Lastly, we present our
concluding remarks in Section 6.
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2 The model

2.1 Presentation of the model

Let us consider a population of N > 1 agents labeled by i ∈ N := {1, ..., N} . Interactions among
players will occur throughout a time horizon [0, T ] , for a fixed T > 0. For i ∈ N , we represent the
actual judgments of player i at time t ∈ [0, T ] by a multi-dimensional vector xi(t) ∈ Rd, d > 1,
whereas we denote the judgment this agent chooses to express by ωi. For instance, we can regard
xi and ωi as one-dimensional, thus denoting the real and expressed judgments, respectively, of
agent i about a situation containing two opposing extremes. Denoting the radical positions by
X and Y, upon proper scaling, we can consider that person i holding position X (resp., Y ) is
such that xi = 0 (resp., xi = 1), whereas we would represent an extremist advocate of position
X by ωi = 0 (resp., ωi = 1). In this setting, we can interpret people located in positions in
between 0 and 1 in the obvious way.

In general, we assume the following dynamics for the system:{
ẋi(t) =

∑N
j=1Kij (ωj(t)− xi(t)) , 0 < t < T,

xi(0) = xi0.
(1)

Above, the functions Kij are the interaction kernels. Henceforth, we make the subsequent
assumptions on them.

(A) For each (i, j) ∈ N 2, we have Kij(z) = aij(z)z, for a C2
b non-negative function aij : Rd →

R.

Regarding the expressed judgments, we assume ωi ∈ Ai, for an admissible control set of the
form

Ai :=
{
ωi ∈ L2(0, T ) : ωi(t) ∈ Ai for almost every t ∈ [0, T ]

}
,

where Ai ⊆ Rd.We write A := ΠN
i=1Ai.Whenever we want to emphasize T in the definition of A,

we will write AT ≡ A. Moreover, we fix the subsequent assumption on the action spaces:

(B) The set Ai is a closed and convex subset of Rd, and there exists R > 0 such that, for every
i ∈ N , we have Ai ⊆ [−R,R]d .

Remark 1. Hereafter, we will denote the L2(0, T )N−projection over Ai by PAi .

Thus, instead of reacting to the real judgments of other players, we consider that agent i interacts
with the profile of expressed judgments. We advocate that this assumption is more realistic, for
we do not expect that player i would be able to identify the true opinions of the others, unless
they deliberately choose to express them, and are capable of doing so effectively. This does not
mean that player i does not acknowledge at all the real judgments of the other players, as these
are taken into account in the formation of ωj , for each j ∈ N , as we will later see in our main
results. Thus, the judgments of player i will have an evolution indirectly impacted by xj , for
j 6= i, viz., through the choice that player j makes for ωj .

We also point out our inclusion of the term Kii (ωi − xi) in the dynamics (1). This represents the
effect that, when emitting a judgment that is not the true one of the agent, a tension is created.
Consequently, through this term, the actual judgment of this agent ought to be pushed towards
the dissimulated one. This is an instance in which we introduce an effect akin to cognitive
dissonance in our framework.

We assume that all persons within the population are rational. The way that they will select
their expressed judgments is founded on objective criteria. More precisely, for i ∈ N , the agent
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i assigns a functional Ji : A → R as follows

Ji(ωi;ω−i) :=

∫ T

0

[
(1− δi)

2
|ωi(t)− xi(t)|2 +

δi
2
|ω(t)− xi(t)|2 + ζiλ (x(t))

]
dt, (2)

where we employed the notations

ω−i := (ω1, . . . , ωi−1, ωi+1, . . . , ωN )ᵀ ,

(ωi;ω−i) := ω,

ω(t) :=
1

N

N∑
j=1

ωj(t), (3)

i.e., the quantity ω figuring in (2) denotes the average expressed judgment of the population,
whereas x is their true counterpart

x(t) :=
1

N

N∑
j=1

xj(t). (4)

Let us now discuss how we structured the functional (2). It is of the form

Ji (ω) =
1

2
J̃i (ω) + ζiI (ω) , (5)

with

J̃i (ω) := (1− δi)
∫ T

0
|ωi(t)− xi(t)|2 dt+ δi

∫ T

0
|ω(t)− xi(t)|2 dt,

and

I (ω) :=

∫ T

0
λ (x(t)) dt.

We begin by making some considerations on J̃i.

The part of J̃i comprising ∫ T

0
|xi(t)− ωi(t)|2 dt (6)

is another instance in which we model cognitive dissonance. The piece∫ T

0
|xi(t)− ω(t)|2 dt (7)

brings into (2) the deviation between the actual judgment of the agent and the global aver-
age judgment. For 0 < δi < 1 and for each ω−i ∈ A−i := Πj 6=iAj , we can see ωi ∈ Ai 7→
J̃i (ωi;ω−i) ∈ R as the functional whose minimum is a Pareto optimal strategy for the bi-
objective problem (6)-(7) (in the i−th direction) — we will take back to this discussion in
Section 5. Regarding the parameter δi ∈ ]−∞, 1[ ,4 we observe that it represents the persua-
siveness/conformity level of the agent. Thus, an agent who seeks to convince others of having
the same judgment as her true one, has δi > 0, as δi enters in (2) directly proportionally to (6).
Similarly, people who tend to conform to the average populations’ judgment have δi < 0, this
effect being more intense the larger |δi| is. Finally, having δi = 0 is proper of a truthful person,

4This asymmetric interval for the parameters δi results from our particular parameterization of the model.
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as such an agent only values expressing a judgment close to her real one, being to an extent
indifferent to the average population expressed judgment.

Here, we stipulate that people envisage to interact with the average manifested judgment of
the whole population. This is in distinction to other works in the literature, such as [13], in
which agents only regard a local average (in the bounded confidence sense). Employing similar
techniques as the ones we will present here, we could consider alternatives, such as replacing ω
in (2) by

ωi(t) :=
N∑
j=1

aij (ωj(t)− xi(t))ωj(t).

For simplicity, from now on, we stick to (3) and (4).

Let us now consider the I component in (5). The function λ : Rd → R is supposed to en-
code exogenous objective information into the individual criterion. Here, the way we choose to
model this is to assume that, as players’ actions impact reality, there will be a feedback effect
perceived by them through the quantity λ. However, agents do not necessarily have the same
sensitivity to the same information. This is the reason why we introduce the parameter ζi. In
this manner, there is a balance, through the latter constant, between the willingness of player
i to persuade/conform, and their reaction to real evidence that is faced as consequence of the
aggregate interaction between the population and the environment where they are situated in.
Regarding λ, we suppose:

(C) The function λ is of class C2
b .

We proceed to give an example consisting of the main motivation for taking I in the form we
exposed in (5).

Example 1. Let us consider the one-dimensional setting, say with judgments varying over the
action space [0, 1] . We consider that objective information corroborates the choice of position 1,
in such a way that the adoption of position 0 by the population leads to a worst outcome in terms
of the third summand within the integral figuring in (2). For concreteness, we propose here

λ(x) := λ0 + λ1 (1− x) ,

with λ0, λ1 > 0. Let us designate the number of occurrences of undesirable events that would be
mitigated if people were to adopt position 1 by Nω. We assume that Nω is an nonhomogeneous
Poisson point process with intensity λ (x) , for a given profile ω ∈ A (where x results from (4),
for true judgments x = (x1, ..., xN )ᵀ given by (1)). The intensity of Nω would be minimal (equal
to λ0) if xi ≡ 1, for all i ∈ N . In general, we observe that minimizing the expected value of Nω

T

amounts to minimizing

E [Nω
T ] =

∫ T

0
λ (x(t)) dt = I (ω) .

2.2 On the well-posedness of the model

The subsequent results are devoted to establishing basic properties of the model (1). We will
first prove existence and uniqueness of a solution x, for each initial datum x0 = (x01, . . . , x0N )ᵀ

and each given profile of strategies ω ∈ A. Then, we will prove a continuity property of the true
judgments in terms of the expressed judgments. We emphasize that, although we consider at
first the behavior x in terms of ω, the equilibria we will investigate will actually involve a fixed
point relation connecting these two quantities. We address these questions in Sections 3 and 5.
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We proceed to provide the definition of the solution concept we consider for the ODEs of Eq.
1.

Definition 1. Given ω ∈ A, we say that a continuous function x : [0, T ] → RdN is a solution
of (1) if, for each i ∈ N and t ∈ [0, T ] , we have

xi(t) = x0i +

∫ t

0

N∑
j=1

Kij (ωj(u)− xi(u)) du.

Thus, we resort to the concept of solutions in the sense of Caratheodory. We have the following
result on existence and uniqueness, which we can prove, under assumption (A), using the same
methodology as in Chapter 2 of [47] — see Theorems 2.5 and 2.17 therein.

Proposition 1. For each ω ∈ A, the model (1) admits a unique (globally defined) solution.

In a similar fashion, we can use the same techniques allowing us to prove Proposition 1 to obtain
the subsequent result.

Proposition 2. Let us assume that ω, ω̃ ∈ A are two admissible expressed judgments, as well
as x0, x̃0 ∈ Rd are two initial configurations of true judgments. Let us denote by x, x̃ the solu-
tions of (1) corresponding to the expressed judgments-initial datum couples (ω,x0) and (ω̃, x̃0),
respectively. Then, for each i ∈ N ,

sup
06t6T

max
j
|xj(t)− x̃j(t)| 6 CeCT

|x0i − x̃0i|+
N∑
j=1

‖ωj − ω̃j‖L1(0,T )

 ,

where C is independent of T.

In the one-dimensional case, it is straightforward to derive from the component-wise unique-
ness of (1) we proved in Proposition 1 the following monotonicity property of the individual
trajectories.

Lemma 1. Let us assume d = 1, and that Kij is independent of (i, j), i.e., Kij ≡ Ki′j′ , for every
i, i′, j, j′ ∈ N . Then, for any given profile of expressed judgments ω, the relation xi,0 6 xj,0
implies xi(t) 6 xj(t), for every t ∈ [0, T ] .

Throughout this whole paper, the next property will be key for the study of the concepts of
equilibrium that we will consider. It asserts that solutions will be confined to a fixed hyper-cube,
as long as the initial condition originates within it.

Lemma 2. Let us suppose that the initial set of judgments satisfy |xi,0| 6 R (cf. assumption
(B)). Then, for every t ∈ [0, T ], we have |xi(t)| 6 R.

Proof. In view of our assumption (B), we have |ωi| 6 R. If |xi(t)| = R, then at this time t we
have

d

du
|xi(u)|

∣∣∣
u=t

=
1

2|xi(t)|
xi(t) ·

N∑
j=1

Kij (ωj(t)− xi(t))

=
1

2

N∑
j=1

aij (ωj(t)− xi(t))
(
xi(t) · ωj(t)

R
−R

)

6
1

2

N∑
j=1

aij (ωj(t)− xi(t)) (|ωj(t)| −R) 6 0.

8



Therefore, we indeed have |xi(t)| 6 R, for every t ∈ [0, T ] .

3 The non-cooperative game

3.1 Nash equilibria

In this section, we investigate equilibria resulting from the assumption that individuals are
rational, and do not seek cooperation. Thus, we are concerned with strategies constituting a
Nash equilibrium, which we define as follows.

Definition 2. A strategy profile ω∗ = (ω1, ..., ωN )ᵀ ∈ A is an open-loop Nash equilibrium if,
and only if, for each i ∈ N and each ωi ∈ Ai, the relation

Ji(ω
∗
i ;ω

∗
−i) 6 Ji(ωi;ω

∗
−i)

holds.

3.2 Variational approach

Our next step in the analysis of Nash equilibria is to derive necessary conditions that such a
strategy has to satisfy. We employ techniques of variational analysis, characterizing the optimal
strategies as solutions to a coupled ODE system. Moreover, this system is augmented with
suitable adjoint parameters. We precisely state and prove this result in the sequel.

Theorem 1 below appears in many disguises in the literature, see [7] and references therein.
However, since it will be convenient to refer to steps of the proof later on, we include a complete
proof.

Theorem 1. A Nash equilibrium ω∗ must solve the fixed point equation

ω∗ = Φ [ω∗] , (8)

where the mapping Φ : L2(0, T )N → A is defined as5

Φ[ω]i = PAi

(
xi −

δi
(1− δi)N

(ω − xi)

− 1

(1− δi)

N∑
j=1

K ′ji (ωi − xj)ᵀ ϕji

 ,

(9)

with ϕji being the solutions of
−ϕ̇ji(t) = −

∑N
l=1K

′
jl (ωl(t)− xj(t))

ᵀ
ϕji(t)

+1i=j {xi(t)− [δiω(t) + (1− δi)ωi(t)]}+ ζi
N∇λ (x(t)) , 0 6 t 6 T,

ϕji(T ) = 0.

(10)

Proof. We compute the Gâteaux derivative〈
DiJi(ωi;ω−i), v

i
〉

=

∫ T

0

[
δi(ω(t)− xi(t)) ·

(
1

N
vi(t)− yi(t)

)
+ (1− δi) (ωi(t)− xi(t)) ·

(
vi(t)− yi(t)

)
+
ζi
N

N∑
j=1

∇λ (x(t)) · yji(t)

 dt,
5For the definition of PAi , see Remark 1.
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where {
ẏji(t) = −

∑N
l=1K

′
jl (ωl(t)− xj(t)) yji(t) +K′ji (ωi(t)− xj(t)) vi(t), 0 6 t 6 T,

yji(0) = 0,
(11)

and yi := yii. Let us introduce the adjoint parameters {ϕji}i,j as the solutions of (10). In this
way, we deduce〈

DiJi(ωi;ω−i), v
i〉
=

∫ T

0

{
vi(t)

[
(1− δi) (ωi(t)− xi(t)) +

δi
N

(ω(t)− xi(t))
]

+

N∑
j=1

yji(t)

{
1i=j [xi(t)− δiω(t) + (1− δi)ωi(t)] +

ζi
N
∇λ (x(t))

}}
dt

=

∫ T

0

{
vi(t)

[
(1− δi) (ωi(t)− xi(t)) +

δi
N

(ω(t)− xi(t))
]

+

N∑
j=1

yji(t)

[
−ϕ̇ji(t) +

N∑
l=1

K′jl (ωl(t)− xj(t))ᵀ ϕji(t)

]}
dt

=

∫ T

0

{
vi(t)

[
(1− δi) (ωi(t)− xi(t)) +

δi
N

(ω(t)− xi(t))
]

+

N∑
j=1

ϕji(t)

[
ẏji(t) +

N∑
l=1

K′jl (ωl(t)− xj(t)) yji(t)

]}
dt

=

∫ T

0

vi(t)

{
(1− δi) (ωi(t)− xi(t)) +

δi
N

(ω(t)− xi(t))

+

N∑
j=1

K′ji (ωi(t)− xj(t))ᵀ ϕji(t)

}
dt.

From this, the result promptly follows.

Now, two remarks concerning the result we presented in Theorem 1 are in order.

Remark 2. For a persuasive agent (that is, with a positive persuasion parameter δi), the formu-
lae (8)-(9) show that she adds a term proportional to the difference between her actual and the
average stated judgment throughout the population. Thus, such persuasive agents are more likely
to radicalize, envisioning to convince others. This effect becomes more intense the closer their
persuasiveness parameter is to one. If, however, the agent is conforming, then she will add to her
true judgment a term leading her in the direction of ω. For instance, when δi = −N/(N+1), the
first two terms within the projection of (9) add up to ω. We can interpret this as if such an agent
were always willing to reinforce the average judgment she perceives out of their peers, whatever
her actual judgment is. The latter claim is, of course, disregarding the influence stemming from
the adjoint parameters, constituting the third term in (9). In fact, the remaining element in
formulae (8)-(9) comprises effects captured by the adjoint parameters.

Remark 3. The adjoint parameters ϕji, with j 6= i, can only be non-vanishing if ζi 6= 0 and if
λ is not constant. In this way, we see that these bring the exogenous objective information into
each individual players’ consideration. This occurs rather indirectly, as we would expect from
(2). Regarding ϕii, both ζi and λ are still present, but there is also the influence of the tension
between xi and the weighted average δiω + (1 − δi)ωi. Moreover, we remark that ϕii appears
multiplied by K ′ii, which we used to dynamically model cognitive dissonance.

We now turn to sufficiency. The co-state Equations (10) are indeed equivalent to the necessary
conditions yielded by the maximum principle as found in [6] and [12]; see also the recent review
in [7]. However, standard results on sufficiency of the maximum principle require additional
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assumptions, as for instance, convexity. If our dynamics (1) were linear in ωj − xi and the
exogenous objective information function, λ, were convex, sufficiency would follow from those
standard results. However, in our setting, because of the nonlinear nature of the kernel Kij , we
need to resort to a more analytical approach. In particular, even with the linear dynamics, our
approach is able to cater for a non-convex λ.

We argue that a natural space to seek these equilibria is in the space consisting of continuous
functions with appropriately constrained action spaces, viz. according to assumption (B). We
first prove that, for sufficiently small terminal time horizons, the mapping Φ admits a unique
fixed point in the space we just described. Then, we provide two results for larger times frames.
The first one just asserts existence of a possibly discontinuous Nash equilibrium, and the second
one guarantees the existence of a continuous one. To prove the first, we develop a continuation
method. The second one follows from the first by means of compactness arguments. Before
entering in this two major theorems, we remark the following stability property for the adjoint
system. We can prove it using the same techniques we referred to in Propositions 1 and 2.

Lemma 3. Let us write ϕωiji to denote the adjoint state (i, j) corresponding to ωi ∈ Ai (the
remaining ω−i being held fixed), and let us assume T 6 1. We have

sup
06t6T

|ϕωiji (t)| 6 C

[
1i=j

(
‖xi‖L1(0,T ) + max

l
‖ωl‖L1(0,T )

)
+ 1

]
and

sup
06t6T

|ϕωi
ji (t)− ϕω̃i

ji (t)| 6 C

(
1 + sup

06t6T

∣∣∣ϕωi
ji (t)

∣∣∣)(max
l
‖ωl − ω̃l‖L1(0,T ) + max

l
‖xl − x̃l‖L1(0,T )

)
.

We are ready to provide our local-in-time existence result.

Theorem 2. If |δi|
|1−δi|N < 1 and maxi |x0,i| 6 R, then there exists τ0 = τ0 (N, Kij , δi, R) > 0

for which T 6 τ0 implies that the mapping Φ has a unique fixed point ω∗ ∈ C ([0, T ])N ∩ AT .
Moreover, ω∗ is a Nash equilibrium.

Proof. Let us consider ω, ω̃ ∈ C ([0, T ]) . According to the estimates in Lemma 3, for T 6 1, we
derive

‖Φ[ω]− Φ[ω̃]‖∞ 6

[
CT +

δi
(1− δi)N

]
‖ω − ω̃‖∞,

where C is independent of T. Thus, as long as |δi| < N |1− δi|, we can choose T small enough so
as to make Φ a contraction. Since the image of Φ is contained in AT , any fixed point necessarily
belongs to this space, thus being admissible.

Let us show that, possibly making T smaller, this unique fixed point is in fact a Nash equilibrium.
We consider second-order conditions:

〈
D2
i Ji(ωi;ω−i), (v

i, vi)
〉
=

∫ T

0

vi(t) ·
{
(1− δi)(vi(t)− yi(t)) +

δi
N

(
vi(t)

N
− yi(t)

)
+

N∑
j=1

[(
1i=jv

i(t)− yji(t)
)ᵀ
K′′ji(ωj(t)− xj(t))ᵀϕji(t)

+K′ji(ωj(t)− xi(t))ᵀψji(t)
]}

dt,

(12)
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where we described yij in (11), and ψji :=
〈
Diϕji, v

i
〉
solves

−ψ̇ji(t) = −
∑N
l=1K

′
jl (ωl(t)− xj(t))ᵀ ψji(t) + 1i=j

{
yji(t)−

[
δi
N

+ (1− δi)
]
vi(t)

}
−
∑N
l=1 (vi(t)1l=i − yji(t))

ᵀK′′jl (ωl(t)− xj(t))ᵀ ϕji(t)
+ ζi
N2D

2λ (x(t)) ·
∑N
l=1 yj,l(t), 0 < t < T,

ψji(T ) = 0.

(13)

As in Lemma 3, if T 6 1, then we can prove that

|yij(t)| 6 CT‖vi‖L1(0,T ) 6 CT‖vi‖L2(0,T ),

and likewise
|ψij(t)| 6 CT‖vi‖L2(0,T ).

Thus, from (12), we derive

〈
D2
i Ji(ωi;ω

−i), (vi, vi)
〉
>

(
1− δi +

δi
N2

)∫ T

0

|vi(t)|2 dt

− C
∫ T

0

|vi(t)||yi(t)|+ |vi(t)|2
N∑
j=1

|ϕji(t)|

+|vi(t)|
N∑
j=1

|yji(t)||ϕji(t)|+ |vi(t)|
N∑
j=1

|ψji(t)|

 dt

>

(
1− δi +

δi
N2
− CT

)∫ T

0

|vi(t)|2dt.

For small enough T > 0, the functional ωi 7→ Ji(ωi,ω
∗
−i) is strictly convex, whence it follows

that the critical point ω∗i is a minimum.

Now, we extend local-in-time existence to its global-in-time analog.

Theorem 3. Let us suppose that the assumptions of Theorem 2 hold. Given T > 0, there exist
Nash equilibria in AT .

Proof. Let us take τ > 0 sufficiently small, in accordance to Theorem 2. That is, we take τ in
such a way that, for every terminal time horizon τ ′ less than or equal to τ, there exists a fixed
point ω ∈ C ([0, τ ′])N of Φ which is a continuous Nash equilibrium. We let ω1,τ ∈ C ([0, τ ])N

be the Nash equilibrium on [0, τ ] corresponding to the initial datum x0,1, . . . , x0,N , and we
denote by x1,τ the corresponding state. Then, we consider the Nash equilibrium ω2,τ on [0, τ ]
corresponding to the initial datum x1,τ

1 (τ), . . . , x1,τ
N (τ), denoting by x2,τ its corresponding state.

Proceeding inductively, we build the sequence
{
ωj,τ

}M
j=1

, for large enough positive integers M,
with the following properties:

• τ = T/M ;

• If xj,τ is the state corresponding to ωj,τ on [0, τ ] , then ωj+1,τ is the continuous Nash
equilibrium on this interval (the unique fixed point of Φ there) corresponding to the initial
datum xj,τ1 (τ), . . . , xj,τN (τ).

Let us denote by ω∗,τ the strategy satisfying

ω∗,τ (t) := ωj,τ (t− (j − 1)τ) (j ∈ {1, . . . ,M} , t ∈ [(j − 1)τ, jτ [) .

12



It is clear that ω∗,τ |[0,T ] ∈ ΠN
i=1Ai. We proceed to check that it is a Nash equilibrium for our

problem. In effect, for each s ∈ [0, T ] and x0 ∈ [−R,R]d , let us denote by

J̃x0,si (ωi;ω−i) :=

∫ s

0

[
δi (ω(t)− xi(t))2 + (1− δi) (ωi(t)− xi(t))2 + λi(x(t))

]
dt,

where the superscript x0 in Jx0,si means that x0 is the initial condition for the judgments x.
Moreover, for each t ∈ [0, τ ] , i ∈ N , j ∈ {1, . . . ,M} and ωi ∈ Ai, let us write:

ω̃ji (t) = ωi(t+ (j − 1)τ),

ω̃∗,τ,ji (t) := ω∗,τi (t+ (j − 1)τ),

x∗,j0 = {xτk ((j − 1)τ)}Nk=1 .

Under these notations, we derive

Jx0,Ti

(
ω∗,τi ;ω∗,τ−i

)
=

M∑
j=1

J̃
x∗,j0 ,τ
i (ω̃∗,ji ; ω̃j,∗,τ−i )

6
M∑
j=1

J̃
x∗,j0 ,τ
i (ω̃ji ; ω̃

j,∗,τ
−i )

= Jx0,Ti

(
ωi;ω

∗,τ
−i
)
.

This proves that ω∗,τ is a Nash equilibrium.

We notice that the strategy ω∗,τ we have built in the proof of Proposition 3 is not necessarily
continuous. In effect, even the choice of the continuation step τ is arbitrary, and is likely to lead
to distinct competitive equilibria. However, we will argue that, upon letting τ ↓ 0, there exists
a limiting continuous profile. This is the content of our next result.

Theorem 4. Let us consider the assumptions of Theorem 2 as valid. Then, for each T > 0,
there exist continuous Nash equilibria ω∗ ∈ AT .

Proof. For the sake of clarity, we divide this proof in three steps. Firstly, we build a continuous
approximation of the strategy ω∗ we constructed in the proof of Proposition 3. Secondly, we
argue that the curve we defined is an approximate Nash equilibrium. Thirdly, we conclude the
result via a compactness argument.

Prior to step one, we fix the following notations. The set TT comprises those τ > 0 for which
T/τ is a large enough positive integer (say T/τ >M0) in such a way that, for each τ ∈ TT , the
strategy ω∗,τ ∈ AT we constructed in the proof of Proposition 3 is a Nash equilibrium. We are
now ready to proceed with the present proof.

Step 1. Construction of an approximate polygonal path.

Let us define γτ as the polygonal path connecting the points ω∗,τ (jτ), for j ∈ {0, ...,M} . We
claim that |γτ − ω∗,τ | = O(τ). In effect, let us take t ∈ [(j − 1)τ, jτ [ . Then, upon writing
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s = t− (j − 1)τ, we have

|ω∗,τi (t)− ω∗,τi ((j − 1)τ)| =
∣∣∣ωj,τi (s)− ωj,τi (0)

∣∣∣
=

∣∣∣∣∣PAi

(
xj,τi −

δi

(1− δi)N

(
ωj,τ − xj,τi

)
−

1

1− δi

N∑
l=1

Kli(ω
j,τ
l − xj,τl )ϕj,τl,i

)
(s)

− PAi

(
xj,τi −

δi

(1− δi)N

(
ωj,τ − xj,τi

)
−

1

1− δi

N∑
l=1

Kli(ω
j,τ
l − xj,τl )ϕj,τl,i

)
(0)

∣∣∣∣∣
6C

(∣∣∣xj,τi (s)− xj,τi (0)
∣∣∣+

N∑
l=1

∣∣∣K′li(ωj,τl (s)− xj,τl (s))ϕj,τli (s)−K′li(ω
j,τ
l (0)− xj,τl (0))ϕj,τli (0)

∣∣∣)

+ max
i

[
δi

(1− δi)N

]
max
i

∣∣∣ωj,τi (s)− ωj,τi (0)
∣∣∣

6Cs+ max
i

[
δi

(1− δi)N

]
max
i

∣∣ω∗,τi (t)− ω∗,τi ((j − 1)τ)
∣∣ ,

whence
max
i
|ω∗,τi (t)− ω∗,τi ((j − 1)τ)| 6 Cτ (t ∈ [(j − 1)τ, jτ [) . (14)

Next, for t ∈ [(j − 1)τ, jτ [ , we estimate

|ω∗,τi (t)− ω∗,τi (jτ)| 6 |ω∗,τi (t)− ω∗,τi ((j − 1)τ)|+ |ω∗,τi ((j − 1)τ)− ω∗,τi (jτ−)|
+ |ω∗,τi (jτ−)− ω∗,τi (jτ)|

6Cτ + |ω∗,τi (jτ−)− ω∗,τi (jτ)|.
(15)

Since xj,τi (τ) = xj+1,τ (0) and ϕj,τli (τ) = 0, l ∈ N , we obtain

|ω∗,τi (jτ−)− ω∗,τi (jτ)| = |ωj,τi (τ)− ωj+1,τ
i (0)|

6

∣∣∣∣∣PAi

xj,τi −
δi

(
ωj,τ − xj,τi

)
(1− δi)N

−
1

1− δi

N∑
l=1

Kli(ω
j,τ
l − xj,τl )ϕj,τl,i

 (τ)

− PAi

(
xj+1,τ
i −

δi

(1− δi)N

(
ωj+1,τ − xj+1,τ

i

)
−

1

1− δi

N∑
l=1

Kli(ω
j+1,τ
l − xj+1,τ

l )ϕj+1,τ
l,i

)
(0)

∣∣∣∣∣
6 max

i

[
δi

(1− δi)N

]
max
i

∣∣∣ωj,τi (τ)− ωj+1,τ
i (0)

∣∣∣
+

∣∣∣∣∣ 1

1− δi

N∑
l=1

Kli(ω
j+1,τ
li (0)− xj+1,τ

li (0))ϕj+1,τ
li (0)

∣∣∣∣∣
6 max

i

[
δi

(1− δi)N

]
max
i

∣∣∣ω∗,τi (jτ−)− ωj+1,τ
i (jτ)

∣∣∣+ Cτ.

(16)

Putting (15) and (16) together, we derive

max
i

∣∣ω∗,τi (t)− ω∗,τi (jτ)
∣∣ 6 Cτ (t ∈ [(j − 1)τ, jτ [) . (17)

From estimates (14) and (17), we deduce that

|ω∗,τ − γτ | = O(τ). (18)

Step 2. The polygonal path γτ is an approximate Nash equilibrium.

From the stability estimate (2) and (18), we obtain

Ji
(
ωτi ;ωτ−i

)
= Ji

(
γτi ;γτ−i

)
+O(τ),
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and
Ji
(
ωi;ω

τ
−i
)

= Ji
(
ωi;γ

τ
−i
)

+O(τ).

These two relations above easily imply that

Ji
(
γτi ;γτ−i

)
> Ji

(
ωi;γ

τ
−i
)
− Cτ, (19)

for each admissible ωi, from where the approximate Nash equilibrium property follows.

Step 3. Up to a subsequence, the approximating sequence {γτ}τ∈TT =
{
γ
T
M

}∞
M=M0

has a

limiting path ω∗ ∈ AT ∩ C ([0, T ])N . Furthermore, ω∗ is a Nash equilibrium.

Estimates (14) and (17) allow us to conclude that the slope of γτ on each interval [(j − 1)τ, jτ [
is bounded by a universal constant C, i.e., with C being independent of the interval and of
τ ∈ TT . In general, if 0 6 s 6 t 6 T, we take j, k such that

(j − 1)τ 6 s < jτ and (k − 1)τ 6 t 6 kτ.

In this way, we infer

|γτ (t)− γτ (s)| 6 |γτ (t)− γτ ((k − 1)τ)|+
k−1∑
l=j

|γτ (lτ)− γτ ((l − 1)τ)|

+ |γτ (t)− γτ ((j − 1)τ)|
6C(t− s).

(20)

We remark that, if j = k, then the summation in the right-hand side of (20) vanishes. We
conclude that the sequence {γτ}τ is equicontinuous. Since {ω∗,τ}τ is uniformly bounded (as
|ω∗,τ | 6 R), Eq. (18) implies that {γτ}τ also is. Therefore, by the Arzelà-Ascoli Theorem, there
exists a subsequential uniform limit ω∗, i.e.,

γτj → ω∗,

uniformly on [0, T ] , as τj → 0 within TT . From (19), we deduce that ω∗ is a continuous Nash
equilibrium.

We now provide a uniqueness result. This indicates that we should indeed concentrate on
continuous equilibria.

Theorem 5. If we assume ζi ≡ 0 and Kii ≡ 0, then there is a unique continuous Nash equilib-
rium.

Proof. Under the current suppositions, we see from (8) that a Nash equilibrium ω∗, alongside
its corresponding state x∗, have the following property: given 0 6 t0 < t1 6 T, the strategy
ω∗(·+ t0)|[0,t1−t0] is a Nash equilibrium corresponding to the initial data x∗(t0). Let us consider
two Nash equilibria ω1,ω2 on [0, T ] . For sufficiently small τ > 0, it follows from Theorem 2
that ω1|[0,τ ] = ω2|[0,τ ]. Let t be the largest real number in [0, T ] for which this relation holds on[
0, t
]
. Denoting by x the state determined by ω1|[0,t] = ω2|[0,t], a unique Nash equilibrium on[

t, t+ τ
]
originates from the initial condition x(t). However, ω1|[t,t+τ ] and ω2|[t,t+τ ] are two

such possibilities, whence they must coincide there. We conclude that ω1 ≡ ω2 on [0, T ] .
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3.3 Some results on the asymptotic behavior of the Nash equilibria

Throughout the remainder of this section, let us fix for each T > 0 a continuous Nash equi-
librium ωT = (ω1,T , . . . , ωN,T )ᵀ . We denote the state variable corresponding to ωT by xT =
(x1,T , . . . , xN,T )ᵀ . In what follows, we present two results concerning the asymptotic behavior
of ωT and xT , as T →∞.

Proposition 3. Let us assume that there are a, b ∈ Rd such that:

• For each j ∈ N , the convergences xj,T (T ) → a ∈ Aj , as T → ∞, and ωj,T (T ) → b ∈ Aj ,
as T →∞, hold;

• For some i ∈ N , the point b belongs to the interior of the set Ai.

Then, a = b.

Proof. From (8)-(9), the current assumptions imply

b = a− δi
(1− δi)N

(b− a) . (21)

Since δi < 1, Eq. (21) allows us to conclude that a = b.

The above proposition tells us that, for large times, the true and expressed judgments cannot
aggregate at two distinct consensus, as long as the true one is interior to at least one of the
action spaces. We next investigate what we can say when each individual true and expressed
judgments converge, as the terminal time horizon goes to infinity.

Proposition 4. If ωi,T (T ), xi,T (T )
T→∞−−−−→ ai, then either ai ∈ ∂Ai, or else ai = 1

N

∑N
j=1 aj .

Proof. Let us assume that, for some i ∈ N , we verify ωi,T (T ), xi,T (T ) → ai, with ai in the
interior of Ai, as T →∞. Then, by Eqs. (8)-(9), we see that

ai = ai −
δi

(1− δi)N

 1

N

N∑
j=1

aj − ai

 ,

whence ai = 1
N

∑N
j=1 aj .

In many examples, we will see that xT (T )− ωT (T )→ 0, as T →∞, but this is not always the
case, as we will show by means of a counterexample (cf. Figure 7).

4 Numerical experiments

Throughout the present section, we will provide several illustrations of situations our models
capture, and draw some conclusions implied by them, which we formulate as “Stylized Facts”
of our models. For the convenience of the reader, we recall in Table 1 the main modeling
elements.

Henceforth, we fix the kernel Kij(z) ≡ K(z) = a(z)z, where

a(z) =

{
cα,R exp

(
α

|z|2−R2

)
if |z| < R,

0 otherwise,
(22)
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Symbol Meaning

xi True judgement
ωi Expressed judgement
Kij Interaction kernels
δi Persuasion (δi > 0)/conformity (δi < 0) parameter
ζi Sensitivity to exogenous objective information
λ Exogenous objective information parameter

Table 1: Recalling the modeling elements.

and cα,R := e
α
R2 is a normalizing constant, in such a way that a(0) = 1. Moreover, we take

α = 0.1 and R = 0.5, unless we explicitly state otherwise. We now proceed to describe the
numerical algorithms we will use to compute the optimal controls, as well as the associated
states.

4.1 A continuation fixed-point iterative numerical algorithm

To compute the control and state variables we devised previously, we employ a two step approach.
Firstly, for a sufficiently small continuation step, we provide an algorithm to solve the fixed point
equation we described in Theorem 2 — see Algorithm 1. Secondly, we propose in Algorithm
2 a continuation method, where we continuously approximate the concatenated strategy by
polygonal ones, thus obtaining an approximate control, as we showed in Theorem 4.

Algorithm 1: Iterative algorithm
Result: Solution to the fixed point equation (8) and the corresponding state variable
Initialize with a sufficiently small T > 0, the error variable ε, the initial data x0, and initial
guess (x0, ω0, ϕ0) for the state-control-adjoint tuple, the iteration variable k = 0, and the
tolerance ε0 > 0.
while ε > ε0 do

1: Define ϕk+1 as the solution of (10) with x = xk and ω = ωk;
2: Given ωk, let xk+1 be the solution of (1) with ω = ωk and initial data x0;
3: Let ωk+1 = Φ

[
ωk
]
, where x = xk+1 and ϕ = ϕk+1

4: Update ε according to some criterion, say, ε :=
∥∥xk+1 − xk

∥∥
∞ +

∥∥ωk+1 − ωk
∥∥
∞;

5: Update k ← k + 1.
end
return ωk, xk

4.2 Completely endogenous one-dimensional experiments

Throughout this set of experiments, we carry out some numerical experiments that are com-
pletely endogenous, meaning that the dynamics of the movements of the agents’ judgments stem
solely from their interactions, i.e., ζi = 0, for each i ∈ N . We also resort to the one-dimensional
setting (d = 1). We summarize our results by formulating some “stylized facts” of our models,
that is, some general statements of situations they capture for suitable configurations of param-
eters. We recall that the parameters δ1, . . . , δN represent the persuasiveness/conformity of the
agents. In each of the experiments, we will point out what are our choices for these, and we also
present them in the legends of the corresponding plots.

We begin with the following:
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Algorithm 2: Continuation algorithm
Result: Approximation to the optimal strategy and corresponding state variables
Initialize with the time horizon T > 0 (chosen as desired), let τ = T/M (M a positive
integer) small enough so that Algorithm 1 converges on [0, τ ] , the initial judgments profile
x0, and a tolerance ε0 > 0 (for solving the fixed point equation at each step).
for k ∈ {0, . . . ,M} do

1: Let
(
ωk, xk

)
be the control-state pair computed via Algorithm 1 on [kτ, (k + 1)τ ]

with initial data xk (kτ) = xk;
2: Set xk+1 := xk ((k + 1)τ) ;
3: Update k ← k + 1;

end
4: Form the continuous approximation ω whose graph is the polygonal path connecting the
points

{(
kτ, ωk (kτ)

)}M
k=0

.
5: Let x be the solution of (1) corresponding to ω.
return ω, x

Stylized fact 1. Strong opiners can group steadily (i.e., aggregate) in an extreme, even under
the assumption of rational behavior.

Stylized fact 2. Truthful centrists lead to a more numerous center, even with the presence of
persuasive extremists.

Stylized fact 3. If centrists are persuasive, then truthful radicals lead to sizable extreme
groups.

For two possible configurations of persuasiveness/conformity parameters, we obtain the outcomes
we showcase in Figure 1. Qualitatively, in the left panel of this figure, there are many more
people aggregating around the center than in right one. We also observe in the latter a trapping
phenomenon: as those that are in suspicion (i.e., mildly pending to one of the sides) radicalize,
the states of the ones with stronger opinions are bound to be at least as extreme as former
ones, cf. Lemma 1. Also, we notice that dissimulation, together with the “physical” bounds
on the domain of admissible judgments, lead to radicalization, even under the assumption of
full rationality of the players, cf. [35]. These two experiments indicate that the behavior of
individuals in suspicion is key to the equilibrium outcome, whence to the first three stylized
facts we considered so far.

Next, we propose two more situations which our model encodes:

Stylized fact 4. If one of the extremes comprises conforming agents, whereas the opposite one
has persuasive agents, with a uniform gradation in between, then we ought to see a prevalence
of the persuasive side.

Stylized fact 5. Sizable cohesive groups can be effective against radicalization.

In effect, we present an asymmetric setting in Figure 2, in contradistinction to the ones we
provided in Figure 1. Players with initial (true) opinion closer to minus one are conforming, and
those closer to one are persuasive. In between these two extremes, the tempers vary uniformly
within the range [−0.8, 0.8] . The fact that those strong opiners to the left of zero give in
rapidly leads them to group together those in doubt (i.e., around the center), forming a strong
cluster. This coalition does include some agents in suspicion to the right of zero (thus weakly
persuasive). There are three players that are strong opining apropos of position ones and are
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Figure 1: Two 1D experiments. In both plots, the horizontal axis represents the time variable,
the vertical axis the judgments, and the initial true judgments are varying in an equispaced
manner from −1 to 1. The solid lines are true judgments, whereas the dotted ones are the
expressed counterparts (corresponding to the same color). We have put N = 10, δi = |x0,i| ∧ .8
on the left panel, and δi = (1− |x0,i|) ∧ .8 on the right one. In both experiments, we set ζi = 0,
for each i ∈ N .

irreducibly extremized. On the other hand, the fact that formed cluster becomes robust enough
(i.e., sizable), together with the fact that they are in the range of interaction of the radicals (i.e.,
expressing opinions that are at a distance of less than a half away from theirs), they manage to
deradicalize those three and attain a non-extremal consensus. The consensus, of course, leans
strongly to the side of the persuasive extreme, which was expected to begin with, although it is
insightful that this consensus did not simply turn out to be position one.

Figure 2: In the current experiment, the horizontal axis represents the time variable, the vertical
axis the distribution of judgments, and the initial true judgments are varying in an equispaced
manner from −1 to 1. The solid lines are true judgments, whereas the dotted ones are the
expressed counterparts (corresponding to the same color). We have put N = 10, δi = (x0,i ∧ .8)∨
(−.8) and ζi = 0.

4.3 Completely endogenous two-dimensional experiments

We now consider two-dimensional experiments (d = 2), but still without the influence of ex-
ogenous objective information (ζi = 0). In the first experiment, which we present in Fig-
ure 3, we take R = 2, keeping α = 0.1 as before. We took T = 8 in all plots, and we
showcase the trajectories of judgements in them. The initial configuration of judgments is
{(0.9, 0.9) , (0.8, 0.7) , (1, −0.35) , (−0.55, −0.35)} . This initialization mimics the position in the
Economic-Social space of the candidates that participated in the US Presidential Election 2020,
according to the Political Compass6. The resulting configuration in Figure 3 agrees with the

6https://www.politicalcompass.org/uselection2020
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instinctive guess that, if we assume that the radius of interaction is large enough, in such a way
that all players interact, then a consensus position arises.

Now, in Figures 4 and 5, when we consider the values of interaction radii R ∈ {1, 1.5} , all
else being the same, the two players in the top right aggregate at the top corner (1, 1), always
selecting to express it as their opinion (i.e., they radicalize). In the first case, see Figure 4, they
do not interact with the one in the lower right, which then adheres to the lower right corner.
However, in the second case, which we display in Figure 5, this player ends up adhering to
the top right as a result of the fact that her actual opinion begins to interact with its radical
advocates (those expressing (1, 1) statically). In both experiments in Figure 4, the agent in the
lower left does not interact with anyone, resulting in her isolated radicalization in the (−1,−1)
position.

Figure 3: We present actual judgments (upper left panel), expressed ones (upper right panel),
and both trajectories together (lower panel). The initial configuration of true judgments is
x0 = ((0.9, 0.9) , (0.8, 0.7) , (1, −0.35) , (−0.55, −0.35))ᵀ . We also took δi = |x0,i| ∧ .8, ζi =
0, T = 8, and R = 2. Each horizontal (resp., vertical) axis corresponds to the values of the first
(resp., second) dimension of the judgments. The evolution of each judgment (true or expressed)
departs from the corresponding initial condition in the direction of the terminal state, to which
it converges — this terminal state being the same for both judgments (here, a consensus). We
observe the analogous behavior for the expressed ones, but slightly more extremized (specially
in the beginning, cf. the lower panel), but which terminates at the same consensus as the true
ones, cf. Proposition 4.

4.4 A one-dimensional experiment with exogenous influence

For the remainder of this section, we assess the influence of external objective information in the
model. We base our experiments in the description we made in Example 1. We consider a one-
dimensional setting (d = 1), and go back to using the parameters α = 0.1 and R = 0.5. Firstly,
we take N = 5 agents, and our initial conditions are (x0,1, . . . , x0,5) = (0, 0.25, 0.5, 0.75, 1).
Now, the extremes correspond to positions labeled 0 and 1.We interpret that all players want to
minimize the expected value of the number of occurrences of an undesirable event, as in Example
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Figure 4: We present actual judgments (left panel) and the expressed ones (right panel). The ini-
tial configuration of true judgments is x0 = ((0.9, 0.9) , (0.8, 0.7) , (1, −0.35) , (−0.55, −0.35))ᵀ .
We also took δi = |x0,i| ∧ .8, ζi = 0, T = 8, and R = 1. Each horizontal (resp., vertical) axis
corresponds to the values of the first (resp., second) dimension of the judgments. The evolution
of each judgment (true or expressed) departs from the corresponding initial condition in the
direction of the terminal state, to which it converges — this terminal state being the same for
both judgments. In the present experiment, the judgments (real and expressed) of each player
converge to the corner of [0, 1]2 which is closest to their initial true judgment.

Figure 5: We present actual judgments (left panel) and the expressed ones (right panel). The ini-
tial configuration of true judgments is x0 = ((0.9, 0.9) , (0.8, 0.7) , (1, −0.35) , (−0.55, −0.35))ᵀ .
We also took δi = |x0,i| ∧ .8, ζi = 0, and R = 1.5. Each horizontal (resp., vertical) axis cor-
responds to the values of the first (resp., second) dimension of the judgments. The evolution
of each judgment (true or expressed) departs from the corresponding initial condition in the
direction of the terminal state, to which it converges — this terminal state being the same for
both judgments. In the present experiment, the judgments (real and expressed) of each player
but the one beginning in the lower right corner converge to the corner of [0, 1]2 which is closest
to their initial true judgment. Both judgments of the remaining player converge to (1, 1).
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1. As they act, they impact the intensity λ of the nonhomogeneous Poisson point process which
counts such manifestations. We assume that position 1 is the ideal take for them to solve this
issue, setting

λ(x) := λ0 + λ1 (1− x) .

Unless we explicitly state otherwise, we fix λ1 = 1. Since the optimal strategies do not depend
on λ0, we do not specify it here. Regarding their temper, we assume that advocates of extremes
positions are symmetrically persuasive. The closer to the middle position of 0.5 an agent is, the
closer she is to being truthful. Explicitly, we take δi = (2|x0,i − 0.5|) ∧ 0.8. Now, as for their
sensitivity to exogenous information, we set ζi = 100x0,i, in such a way that players that are
near position 1 are more sensitive to this external objective information. As a player’s initial
actual opinion gets closer to zero, they tend to neglect this aspect of the problem and focus on
the other elements of their performance criteria. This is in accordance to the phenomenon of
confirmation bias, where people favor information that supports their prior positions.

In the current setting, we propose to address the following stylized facts:

Stylized fact 6. Even under external object information, in realistic scenarios, rational dis-
simulating agents can group against the truth.

Stylized fact 7. Even in face external objective information, an aggregate incorrect initial
judgment can be persistent (if people are not truthful).

We expose in Figure 6 the configuration that results from these elements. We observe a re-
markable outcome: people acting strategically (i.e., envisaging to minimize their utilities) end
up grouping majorly against the appropriate position. What happens is that players below 0.5
slightly move towards it, whereas those above it move away from it. Moreover, the latter move-
ment is more significant in magnitude than the former. Thus, the player in the center interacts
more intensely with position 0 players, resulting in her grouping together with them against 1.
Just after time 3, when the agent initially in doubt seems to take a clear direction (the wrong
one), the position 1 advocates give up in trying to convince her, and aggregate at once at the
correct spot.

The situation in Figure 6 is drastically distinct to the case in which no one is sensitive to external
information (i.e., ζi = 0, for all i ∈ N ), ceteris paribus, which we showcase in the left panel of
Figure 7 as a benchmark. The latter experiment is also insightful, as it shows that it is possible
that players accommodate at an equilibrium in which actual and expressed judgments of some
players (here, all but one) do not coincide asymptotically in time. It is an interesting experiment,
showing the richness of dynamics we can obtain as competitive equilibria in our model.

If every player were truthful, i.e., δi = 0, for all i ∈ N , ceteris paribus, then we would obtain as
the equilibrium the configuration we present in the left panel of Figure 8. In this case, we begin
noticing that the expressed judgments differ from the actual ones only slightly, which is consistent
with what we expect from truthful agents. Next, we see that in face of the exogenous information,
all agents rapidly gather together in a state of doubt, i.e., around 0.5, not pending decidedly
to neither side. Bundled together, they proceed to digest what they captured in extramental
reality, walking gradually towards the correct side. Given enough time, they eventually reach
the correct position, collectively finding the correct solution. We emphasize the remarkable
fact that we maintained ζi = 100x0i, whence our modeling of confirmation bias is still in force,
highlighting the importance of truthfully in the resulting efficient collective behavior (from a
social welfare perspective). We have raised the value of λ1 to 7 in the right panel of Figure
8, making the deviation between real and expressed judgments be a bit more significant, and
players to reach an agreement sooner.
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Figure 6: Experiment under the influence of exogenous objective information. The five initial
true judgments being in an equispaced configuration from 0 to 1, we take δi = (2|x0,i − 0.5|)∧0.8,
ζi = 100x0,i, and λ(x) = λ0+1−x (results are independent of λ0). The horizontal axis represents
time, whereas the vertical one is our scale of judgments. The continuous lines are true judgments,
the dotted ones are the expressed counterpart (of the same color).

Figure 7: Benchmark for the experiment under the influence of exogenous objective information.
The five initial true judgments being in an equispaced configuration from 0 to 1, we take δi =
(2|x0,i − 0.5|) ∧ 0.8, ζi = 0. The horizontal axis represents time, whereas the vertical one is our
scale of judgments. In the left panel, the continuous lines are true judgments, the dotted ones
are the expressed counterpart (of the same color). In the right panel, we show ẋi in the right
one.

Figure 8: Two experiments with objective information under complete truthfully, i.e., δi = 0,
for every i ∈ N . In the left panel, we set λ(x) = λ0 + 1 − x, whereas λ(x) = λ0 + 7(1 − x)
in the right one. For the remaining parameters, we took N = 5, the initial true judgments in
an equispaced configuration from 0 to 1, and ζi = 100x0,i, in both plots. Furthermore, in the
two figures, the horizontal axis represents time, whereas the vertical one comprises values of the
judgments; continuous lines are real judgments, whereas the dashed ones (of the same color) are
the expressed counterparts.
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We finish this section by showing in Figure 9 two situations in which the population has an
initial average judgment in the opposite side of the correct one. There are seven individuals,
having initial actual judgments {0, .1, .2, .3, .5, .7, .9} , with an average of about .39 < .5. All
the remaining parameters are as in Figure 6. We compare the λ1 = 1 case to the λ1 = 7 one
to highlight the persistence of the observed behavior relative to the strength of the exogenous
information that players observe. Therefore, the initial average judgment of the population is
nearer to position 0 than to 1 — the aggregate is in suspicion of zero as being the best choice
of action. Consequently, all but two of the players do quickly agree on assenting at a consensus
consisting of the wrong position. The agents not complying with this position are the ones that
begin closer to position 1, and they cannot convince the truthful one, initially in doubt.

Figure 9: A case with a skewed initial set of judgments. We take x0 = (0, .1, .2, .3, .5, .7, .9)ᵀ .
Moreover, we put λ(x) = λ0 + 1 − x (left panel) and λ(x) = λ0 + 7(1 − x) (right panel). The
remaining parameters are δi = (2 |x0,i − 0.5|) ∧ 0.8 and ζi = 100x0,i, for i ∈ N . In both plots,
the horizontal axis represents time, the vertical one the judgments. The solid lines are real
judgments, whereas the dotted ones are the expressed corresponding to the solid lines of the
same color.

5 The cooperative game

In this section, we investigate the situation in which the populations’ judgments still evolve
under (1), and use the criteria Ji we defined in (2), but now we do not assume that they are
competing. Rather, we suppose that they lean towards building a consensus, at least in principle.
In particular, from here on we will abandon the concept of Nash equilibrium, and look for an
alternative notion which most appropriately represents the collective behavior of agents among
a cooperative population. In this direction, we adopt a definition inspired in the one that the
mathematical economist Vilfredo Pareto proposed7: a social optimum is a set of strategies such
that any individual improvement is necessarily detrimental to someone else. In practice, not
every Pareto optimal strategy realistically expresses something that we would regard as a social
optimum. However, we commonly identify a whole front of Pareto optimal controls, and it is
a fair guess to look to such an optimizer within this set. We engage in this discussion more
technically in the sequel.

5.1 Necessary and sufficient conditions for a cooperative equilibrium

Definition 3. A strategy ω∗ is a Pareto equilibrium if there does not exist ω such that

Ji(ω) 6 Ji(ω
∗), i ∈ N ,

7His actual words were (see [44], page 18): “Nous étudierons spécialement l’équilibre économique. Un sys-
tème économique sera dit en équilibre si le changement d’une des conditions de ce système entraîne d’autres
changements qui produiraient une action exactement opposée.”
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with the inequality holding strictly for at least one such i.

The following result is classical in the optimization literature, cf. [40] and [18].

Proposition 5. If the strategy ω∗ minimizes the functional
∑N

i=1 θiJi, for some θ1, ..., θN > 0

subject to
∑N

i=1 θi = 1, then it is a Pareto equilibrium. Conversely, if ω∗ is a Pareto equilib-
rium and the functionals {Ji}Ni=1 are convex, then ω∗ must minimize J =

∑N
i=1 θiJi, for some

θ1, . . . , θN > 0, such that
∑N

i=1 θi = 1.

Proposition 5 sheds light on the very definition of our performance criteria. In effect, from (5),
we see that a minimizer of the term J̃i in Ji is a Pareto optimal strategy, in a certain sense. If
we divide Ji by 1/2 + ζi, then we can even see a minimizer of Ji as a Pareto equilibrium for
the criteria

{
J̃i, I

}
. In this way, we can interpret the (partial) minimization of Ji as if person

i internally tried to reconcile her possibly conflicting personal goals by accommodating in a
suitable Pareto optimal strategy.

We can interpret the parameters θ1, . . . , θN when forming J =
∑N

i=1 θiJi as the influence of
the corresponding agent in the cooperative formation. In fact, J is simply a weighted average
of the set of criteria {Ji} , the θ1, . . . , θN being precisely the weights. Proposition 5 shows
that some Pareto optimal strategies are found precisely as minima of these J. A consequence
of this observation is that, through the choice of these weights, we can introduce a hierarchy
in the model: a player having higher θi (relative to her peers) is such that her particular Ji
out-stands in the average, wherefrom we expect a possible consensus to be reached near to her
judgment.

Let us also remark that choosing θi = 0, for some i, when forming the functional J :=
∑N

i=1 θiJi
is not likely to be a realistic social optimum. Indeed, in this case, the functional Ji of agent
i ∈ N is disregarded in the formation of J. In particular, if θi = 0, for all but one i0 ∈ N , then
J = Ji0 , and a Pareto optimizer is simply the strategy which minimizes Ji0 . This means that
everyone would just act in such a way as to help the performance of player i0, which will most
likely lead to an uninteresting behavior. For this reason, we will focus on the elements of the
Pareto front corresponding to θ1, . . . , θN > 0.

As in the competitive setting, we split the proof in two parts (Theorems 6 and 7 below) —
obtaining the necessary condition and then verifying their sufficiency for small time, which is
then extended to all time.

Theorem 6. Let us consider a Pareto equilibrium ω∗ = (ω∗1, . . . , ω
∗
N )ᵀ minimizing

∑N
i=1 θiJi,

for some θ1, . . . , θN > 0 with
∑N

i=1 θi = 1. Then,

ω∗i (t) = Ψ [ω∗]i (t), (23)

for the mapping Ψ : A → A whose i−th component is8

Ψ [ω]i := PAi

xi − 1

θi(1− δi)

 1

N

N∑
j=1

θjδj (ω − xj)

+

N∑
j=1

K ′ji(ωi − xj)ᵀϕj

 ,

(24)

8For the definition of PAi , see Remark 1.
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where we define x = (x1, . . . , xN )ᵀ as the state corresponding to ω, ω := 1
N

∑N
j=1 ωj , x :=

1
N

∑N
j=1 xj , and the functions {ϕj}j solve

−ϕ̇j(t) = −
∑N
l=1K

′
jl (ωl(t)− xj(t))

ᵀ
ϕj(t) + θj {xj(t)− [(1− δj)ωj(t) + δjω(t)]}

+ 1
N

∑N
k=1 θkζkλ

′ (x(t)) , 0 < t < T,

ϕj(T ) = 0.

Proof. We proceed as in Theorem 1 to deduce the necessary conditions (23) as a consequence of
the first-order optimality conditions that the minimization of ω ∈ A 7→ J (ω) ∈ R requires.

As a necessary condition, we obtained Eq. (23), which any minimizer of
∑N

i=1 θiJi must satisfy
— a similar relation to Eq. (8), which in turn must hold for Nash equilibria in the competitive
setting. It is insightful to emphasize some differences between the two. Firstly, we notice
that in (23) the adjustment in the expressed judgment of each player, relative to their actual
one, depend on the individual only in their intensity, i.e., though the parameter 1

θi(1−δi) and
the interaction variation strength K ′ji. This is radically distinct to what we observe in (8). In
the present cooperative setting, agents move upon considering an aggregate weighted deviation
from the average overall expressed opinion (apart from the adjoint parameters), whereas in the
competitive framework, each player moved based on her signal only. Moreover, in the cooperative
framework, the adjoint parameters are homogeneous throughout the population — this is not
the case in the competitive counterpart. Finally, let us point out that in the current cooperative
setting, Theorem 6 does not necessarily constrain all the Pareto equilibria, but only those that
minimize some convex combination

∑N
i=1 θiJi. We will in fact focus on a finer subclass of such

equilibria, as we proceed to discuss.

Theorem 7. (a) If θ1, . . . , θN > 0,
∑N

i=1 θi = 1,

1

N

N∑
j=1

θjδj < min
i∈N
{θi(1− δi)} , (25)

and T > 0 is small enough, then (23) admits a unique continuous solution ω ∈ A. Moreover,
taking T smaller, if necessary, this strategy becomes a Pareto equilibrium.

(b) For every T > 0, condition (25) implies that there exists a continuous strategy ω ∈ A
minimizing J :=

∑N
i=1 θiJi.

Proof. (a) We can show the existence of a continuous ω just as we did in Theorem 2, viz., by
using the stability results we developed in Section 2 and Banach fixed point Theorem. The fact
that ω is a Pareto equilibrium, for sufficiently small T, follows from the second-order conditions,
just as in the end of the proof of Theorem 2, but considering the joint dependence on the controls
of the aggregate cost function — we omit the details here.

(b) We can fix a sufficiently small τ = T/M (with M being a sufficiently large positive integer),
and concatenate minimizers of the pieces of J, in a similar way as we did in Proposition 3,
thus forming a (possibly discontinuous) minimizer ω̃τ . Then, we can construct an approximate
minimizer for J by taking an appropriate polygonal γτ connecting the points {ω̃τ (jτ)}Mj=0 . By
letting τ ↓ 0 through a suitable subsequence, we argue as in the proof of Theorem 4 to conclude
that {γτ}τ converges to a continuous minimizer ω of J.

We remark that, in Theorem 7, we identify a subset of the whole Pareto front. We also do not
affirm that the strategy ω we identified in item (b) is the unique minimizer of J =

∑N
i=1 θiJi
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— it is indeed a (global) minimizer, and, by virtue of Proposition 5, a Pareto equilibrium.
However, we argue that these already comprise a rich set and the restrictions we impose are
not too strong. Indeed, item (a) constrains, to an extent, how persuasive agents can be, as
well as, from below, the influence that each individual has. For studying cooperative games,
we advocate that these assumptions are reasonable. Aside from the fact that they make sense
when we consider that agents cooperate, we further back up our claim by showing, through
some numerical experiments, that we do obtain equilibria configurations representing realistic
scenarios in this context.

Before proceeding to the numerical illustrations, we provide the counterpart of Proposition 4 in
the current cooperative setting. The proof is similar to it, whence we omit it here.

Proposition 6. Let us suppose that, for each T > 0, ω(·, T ) is a Pareto optimal strategy
minimizing J =

∑N
i=1 θiJi, where θ1, . . . , θN > 0 and

∑N
i=1 θi = 1. If ωi(T, T ), xi(T, T ) → ai,

then either ai ∈ ∂Ai, for all i ∈ N , or else

N∑
i=1

θiδi

N∑
i=1

ai =

N∑
i=1

θiδiai.

We notice that we cannot necessarily say, under the assumptions of Proposition 6, that there is no
interior clusterization. In effect, we will show by means of an example that such a phenomenon
can happen in this context.

5.2 Numerical experiments
Let us recall the mapping Ψ : A → A we defined in (9), that is,

Ψ[ω∗] := PAi

x∗i − 1

θi(1− δi)

 1

N

N∑
j=1

θjδj
(
ω∗ − x∗j

)
+

N∑
j=1

K′ji(ω
∗
i − x∗j )ᵀϕ∗j

 ,

where
{
ϕ∗j

}N
j=1

are as in Theorem 6 (with ω = ω∗). We adapt Algorithm 1 to the present setting

by replacing Φ by Ψ in it. Subsequently, we compute the Pareto equilibria we show below via an
adaptation of Algorithm 2, i.e., in which we use the modified Algorithm 1. We fix K(z) = a(z)z,
with a as in Section 3, and we fix the parameters α = 0.1 and R = 0.5.

We proceed to begin the formulation of the first stylized fact of the current setting. Let us con-
sider a cooperative group where one extreme is much more influential than the other. Then, the
more extreme advocates of the less influential side might lead the movement towards consensus
building. In a way, they will give in their more incisive opinion, so as to “give the example” for
those that were on their side, but less radically, to follow them. If we assume that agents are
persuasive, with a persuasion parameter increasing with respect to the opinion’s size, then the
more extreme opiners in the less influential side will want to be on the “winning” side. In the
current cooperative framework, this amounts to the less influential extremists to switch sides
more easily — in a sense, their judgements are more flexible, since everyone is more concerned
to building a consensus. However, those initially in suspicion of the less influential side can turn
out more stubborn, since they care less about persuading.

Stylized fact 8. Persuasive agents with an initially less influential extreme opinion have a
key role in cooperative formation — in a way, they lead by example as they give in their radical
position.
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Stylized fact 9. People with a more moderate opinion leaning to the less influential side
of a binary proposition can be more stubborn in a cooperative formation. These are, to an
extent, responsible for holding up the terminal consensus of being too radical on the initially
more influential side.

In our first experiment of this section, we provide an example illustrating how our model captures
the two last stylized facts we stated, see Figure 10. We propose a setting where: (i) The influence
θi of player i on the cooperative group is higher the closer her initial judgment is to one; (ii)
The persuasion level of an agent is proportional to her initial judgment’s absolute value. We
notice that the order of the expressed judgments eventually partially flips, with the players that
were once nearer to position negative one becoming more intense advocates of the side where
the cooperative group forms the consensus. The original agents in suspicion of position minus
one show a bit more stubbornness, or some kind of persistence on this side — here, this is due
to the fact that they are more influential. It is also worthwhile to remark that this movement
of the opiners of the negative side end up attracting a player slightly in suspicion of position
one; thus, we observe the formation of two transitory clusters, the terminal consensus being met
halfway between a state of doubt and position one. The latter discussion can also indicate how
our model captures, as a result of social interactions, the phenomenon of individuals behaving
in an edgy way: some who were once in an extreme side, suddenly become supporters of an
opposite viewpoint. We gather some of these insights in the sequel.

The second phenomena we pay attention to concerns the role of symmetry in consensus building
within a cooperative group. Namely, in realistic settings, it can lead to unsolvable disputes. In
real-world situations, these excess of equality of several aspects among a population’s individuals
can possibly yield conflicts or other kinds of issues.

Stylized fact 10. From a social viewpoint, excess of temper and influence symmetry, among
agents of a population, around a central state, might be an issue for agreement on a consen-
sus.

To illustrate how our model can capture this stylized fact, we propose the next experiment. Our
framework is akin to that of [46]. Namely, we consider a setting with two groups of agents: one
formed by three major players (leaders), the other constituted by four minor ones (followers).
Among the major players, two of them are extreme opiners initially lying in opposite extremes
of the admissible spectrum of judgments. The remaining major agent is a centrist/doubter. The
four minor players initial judgments ±1/3 and ±2/3. We clarify that we add the hierarchy here

Figure 10: A one-dimensional Pareto equilibrium with N = 10, θi = 2(i + 1)/[N(N + 1)],
δi = |xi0|/5, ζi = 0. Initial judgments are distributed in an equispaced manner from −1 to 1.
The horizontal axis consists of time, and the vertical one represents judgments. Solid lines are
true judgments, whereas dotted ones are expressed judgments.
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by stipulating that the influence of the leaders is higher than that of the followers. We showcase
it in Figure 11, where we consider a symmetric scenario. There, the system attains a terminal
configuration consisting of interior clusterization — as we had already announced that this could
happen, in the discussion following Proposition 6, and through this example we establish this
claim. From this insightful illustration, we obtain a suggestion that, from a social perspective,
excess of symmetry (relative to the agents’ tempers and overall influence over the population)
around the state of doubt, or the center, can be an issue for a cooperative group to agree on
an asymptotic consensus — people might arrive at an unsolvable dispute, in accordance to our
previous discussion.

Figure 11: A configuration in which the extreme opiners and the doubter are hierarchically above,
i.e., they have a higher influence on the cooperative formation. We fix N = 7, (θ1, . . . , θ7) =
(5, 1, 1, 5, 1, 1, 5)/19, δi = |x0,i|/5, ζi = 0, and initial judgments are distributed in an equispaced
manner from −1 to 1. The horizontal axis comprises time, and the vertical one the judgments.
Solid lines are true judgments, and dotted ones are the expressed counterparts (corresponding
to the same color).

We now analyze in Figure 12 an asymmetric situation: the followers (i.e., minor agents) on the
positive side of the spectrum of opinions are slightly more influential than the other ones. We see
the formation of two transitory clusters, in such a way that the agent in doubt bundles together
those with a negative opinion, whereas the three with an opinion closer to one form another.
The fact that the former cluster turns out more numerous provides them enough strength to
make the final consensus not equal to the extreme position one. We also remark that, when the
transitory clusters are formed, the larger one is more conforming — expressing an overall opinion
different than their actual ones — whereas the smaller one is more persuasive, even radicalizing
for a while.

6 Conclusions

We proposed a model of social dynamics in which agents among a finite population interact
through their stated judgments. Thus, each agent chooses which judgment she will express, and
her true judgment is updated in accordance to those expressed by her peers. We worked in a
control-theoretic framework, stipulating that the players updated their judgments by minimizing
suitable performance criteria. The elements we considered for the design of these criteria were
the agents’ temper (persuasive, truthful, or conforming), as well as their sensitivity to objective
exogenous information. We modeled the latter aspect as an average of the number of undesirable
occurrences whose intensity was influenced by the agents’ true judgments.

We first investigated the non-cooperative framework. We considered Nash equilibria (NE),
proving a local-in-time existence and uniqueness result. Then, we showed by an iterative method
that we could always find square integrable NE, but there was a degree of ambiguity — the step
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Figure 12: An alternative configurations where the extreme opiners and the doubter are still
hierarchically superior, i.e., they have a higher influence on the cooperative formation. We now
fix N = 7, (θ1, . . . , θ7) = (5, 0.7, 0.7, 5, 1.3, 1.3, 5)/19, δi = |x0,i|/5, ζi = 0, and initial judgments
are distributed in an equispaced manner from −1 to 1. The horizontal axis comprises time, and
the vertical one the judgments. Solid lines are true judgments, and dotted ones are the expressed
counterparts (corresponding to the same color).

size. We ruled out this issue by arguing via compactness that, as the continuation step goes to
zero, the corresponding strategies we build converge to a continuous NE. In a particular case, we
proved that there is in fact at most one (hence, a single one) such equilibrium. Using the richness
of the equilibria we obtain by varying the model parameters, we then explored the implications
of our model. We proposed a series of stylized facts to demonstrate how our results can provide
conceptual insights about real world phenomena.

Then, we proceeded to study the problem of cooperative formation through the light of our
model. In this setting, we worked under the notion of Pareto equilibria. Although we did not
provide a general identification of the Pareto front, we were able to find a rich set of Pareto
equilibria. Our key assumptions were that neither agents were too persuasive, nor that there
were agents with a too small overall influence over the population — hypotheses that sound
reasonable, from the viewpoint of cooperative games. The techniques we used to prove the
technical results for this cooperative setting were quite similar to those we employed in the
competitive one. We finished this part of the work by providing some numerical experiments,
also in a similar form as in the previous (competitive) setting.
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