Skip to main content
Log in

Traveling Wave Solutions of the Kawahara Equation Joining Distinct Periodic Waves

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The Kawahara equation is a weakly nonlinear longwave model of dispersive waves that emerges when leading, third order, dispersive effects are in balance with the next, fifth-order correction. Traveling wave solutions of the Kawahara equation satisfy a fourth-order ordinary differential equation in which the traveling wave speed is a parameter. The fourth-order equation has Hamiltonian structure and admits a two-parameter family of single-phase periodic solutions with varying speed and Hamiltonian. A set of jump conditions is derived for pairs of distinct periodic solutions with equal speed and Hamiltonian. These are necessary conditions for the existence of traveling waves that asymptote to the periodic orbits at \(\pm \infty \). Bifurcation theory and parameter continuation are used to construct multiple solution branches of the jump conditions. For example pairs of compatible periodic solutions, the heteroclinic orbit representing the traveling wave is constructed from the intersection of stable and unstable manifolds of the periodic orbits. Each branch terminates at an equilibrium-to-periodic solution in which the equilibrium is the background for a solitary wave that connects to the associated periodic solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Ablowitz, M.J., Segur, H.: Solitons and Inverse Scattering Transform. SIAM, Philadelphia (1981)

    Google Scholar 

  • Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn. Addison-Wesley Publishing Company Inc, Redwood City (1987)

    Google Scholar 

  • Akers, B.F., Gao, W.: Wilton ripples in weakly nonlinear model equations. Commun. Math. Sci. 10, 1015–1024 (2012)

    MathSciNet  Google Scholar 

  • Akers, B., Nicholls, D.P.: Wilton ripples in weakly nonlinear models of water waves: existence and computation. Water Waves 3, 491–511 (2021)

    MathSciNet  Google Scholar 

  • Amick, C.J., Toland, J.F.: Homoclinic orbits in the dynamic phase-space analogy of an elastic strut. Eur. J. Appl. Math. 3, 97–114 (1992)

    MathSciNet  Google Scholar 

  • Aougab, T., Beck, M., Carter, P., Desai, S., Sandstede, B., Stadt, M., Wheeler, A.: Isolas versus snaking of localized rolls. J. Dyn. Differ. Equ. 31, 1199–1222 (2019)

    MathSciNet  Google Scholar 

  • Baqer, S., Smyth, N.F.: Modulation theory and resonant regimes for dispersive shock waves in nematic liquid crystals. Physica D 403, 132334 (2020)

    MathSciNet  Google Scholar 

  • Benilov, E.S., Grimshaw, R., Kuznetsova, E.P.: The generation of radiating waves in a singularly-perturbed Korteweg–de Vries equation. Physica D 69, 270–278 (1993)

    MathSciNet  Google Scholar 

  • Bridges, T.J., Donaldson, N.M.: Degenerate periodic orbits and homoclinic torus bifurcation. Phys. Rev. Lett. 95, 104301 (2005)

    Google Scholar 

  • Buffoni, B., Séré, E.: A global condition for quasi-random behavior in a class of conservative systems. Commun. Pure Appl. Math. 49, 285–305 (1996)

    MathSciNet  Google Scholar 

  • Buffoni, B., Champneys, A.R., Toland, J.F.: Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system. J. Dyn. Differ. Equ. 8, 221–279 (1996)

    MathSciNet  Google Scholar 

  • Buryak, A.V., Champneys, A.R.: On the stability of solitary wave solutions of the fifth-order KdV equation. Phys. Lett. A 233, 58–62 (1997)

    MathSciNet  Google Scholar 

  • Champneys, A.: Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics. Physica D 112, 158–186 (1998)

    MathSciNet  Google Scholar 

  • Champneys, A.R., Toland, J.F.: Bifurcation of a plethora of multi-modal homoclinic orbits for autonomous Hamiltonian systems. Nonlinearity 6, 665–721 (1993)

    MathSciNet  Google Scholar 

  • Chardard, F.: Stabilité des ondes solitaires, PhD thesis, École normale supÉrieure de Cachan (2009)

  • Chardard, F., Dias, F., Bridges, T.J.: Computing the Maslov index of solitary waves, Part 1: Hamiltonian systems on a four-dimensional phase space. Physica D 238, 1841–1867 (2009)

    MathSciNet  Google Scholar 

  • Chen, B., Sallman, P.G.: Numerical evidence for the existence of new types of gravity waves of permanent form on deep water. Stud. Appl. Math. 62, 1–21 (1980)

    MathSciNet  Google Scholar 

  • Chugunova, M., Pelinovsky, D.: Two-pulse solutions in the fifth-order KdV equation: rigorous theory and numerical approximations. Discrete Contin. Dyn. Syst. B 8 (2007)

  • Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    MathSciNet  Google Scholar 

  • Creedon, R., Deconinck, B., Trichtchenko, O.: High-frequency instabilities of the kawahara equation: a perturbative approach. SIAM J. Appl. Dyn. Syst. 20, 1571–1595 (2021)

    MathSciNet  Google Scholar 

  • Ehrnström, M., Kalisch, H.: Traveling waves for the Whitham equation. Differ. Integral Equ. 22, 1193–1210 (2009)

    MathSciNet  Google Scholar 

  • El, G.A., Smyth, N.F.: Radiating dispersive shock waves in non-local optical media. Proc. R. Soc. A Math. Phys. Eng. 472, 20150633 (2016)

    MathSciNet  Google Scholar 

  • Fornberg, B.: Generation of finite difference formulas on arbitrarily spaced grids. Math. Comput. 51, 699–706 (1988)

    MathSciNet  Google Scholar 

  • Gorshkov, K., Ostrovsky, L.: Interactions of solitons in nonintegrable systems: direct perturbation method and applications. Physica D 3, 428–438 (1981)

    Google Scholar 

  • Gorshkov, K., Ostrovsky, L., Papko, V., Pikovsky, A.: On the existence of stationary multisolitons. Phys. Lett. A 74, 177–179 (1979)

    MathSciNet  Google Scholar 

  • Grimshaw, R., Joshi, N.: Weakly nonlocal solitary waves in a singularly perturbed Korteweg–de Vries equation. SIAM J. Appl. Math. 55, 124–135 (1995)

    MathSciNet  Google Scholar 

  • Haragus, M., Lombardi, E., Scheel, A.: Spectral stability of wave trains in the Kawahara equation. J. Math. Fluid Mech. 8, 482–509 (2006)

    MathSciNet  Google Scholar 

  • Haupt, S.E., Boyd, J.P.: Modeling nonlinear resonance: a modification to the stokes’ perturbation expansion. Wave Motion 10, 83–98 (1988)

    MathSciNet  Google Scholar 

  • Hoefer, M.A., Smyth, N.F., Sprenger, P.: Modulation theory solution for nonlinearly resonant, fifth-order Korteweg–de Vries, nonclassical, traveling dispersive shock waves. Stud. Appl. Math. 142, 219–240 (2019)

    MathSciNet  Google Scholar 

  • Hunter, J.K., Scheurle, J.: Existence of perturbed solitary wave solutions to a model equation for water waves. Physica D 32, 253–268 (1988)

    MathSciNet  Google Scholar 

  • Kakutani, T., Ono, H.: Weak non-linear hydromagnetic waves in a cold collision-free plasma. J. Phys. Soc. Jpn. 26, 1305–1318 (1969)

    Google Scholar 

  • Kawahara, T.: Oscillatory solitary waves in dispersive media. J. Phys. Soc. Jpn. 33, 260–264 (1972)

    Google Scholar 

  • Knobloch, E., Uecker, H., Wetzel, D.: Defectlike structures and localized patterns in the cubic-quintic-septic Swift–Hohenberg equation. Phys. Rev. E 100, 012204 (2019)

    MathSciNet  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical Systems, the Three-Body Problem and Space Mission Design. Springer, New York (2011)

    Google Scholar 

  • Mancas, S.C., Hereman, W.A.: Traveling wave solutions to fifth- and seventh-order Korteweg–de Vries Equations: Sech and Cn solutions. J. Phys. Soc. Jpn. 87, 114002 (2018)

    Google Scholar 

  • Parker, R., Sandstede, B.: Periodic multi-pulses and spectral stability in Hamiltonian PDEs with symmetry. J. Differ. Equ. 334, 368–450 (2023)

    MathSciNet  Google Scholar 

  • Ratliff, D.J.: Phase dynamics of periodic wavetrains leading to the 5th order KP equation. Physica D 353–354, 11–19 (2017)

    MathSciNet  Google Scholar 

  • Saffman, P.G.: Long wavelength bifurcation of gravity waves on deep water. J. Fluid Mech. 101, 567–581 (1980)

    MathSciNet  Google Scholar 

  • Sandstede, B.: Instability of localized buckling modes in a one-dimensional strut model. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 355, 2083–2097 (1997)

    MathSciNet  Google Scholar 

  • Schaeffer, D.G., Shearer, M.: The classification of 2 \(\times \) 2 systems of non-strictly hyperbolic conservation laws, with application to oil recovery. Commun. Pure Appl. Math. 40, 141–178 (1987)

    Google Scholar 

  • Sepulchre, J.-A., MacKay, R.S.: Localized oscillations in conservative or dissipative networks of weakly coupled autonomous oscillators. Nonlinearity 10, 679–713 (1997)

    MathSciNet  Google Scholar 

  • Sprenger, P., Hoefer, M.A.: Shock waves in dispersive hydrodynamics with nonconvex dispersion. SIAM J. Appl. Math. 77, 26–50 (2017)

    MathSciNet  Google Scholar 

  • Sprenger, P., Hoefer, M.A.: Discontinuous shock solutions of the Whitham modulation equations as zero dispersion limits of traveling waves. Nonlinearity 33, 3268–3302 (2020)

    MathSciNet  Google Scholar 

  • Trichtchenko, O., Deconinck, B., Kollár, R.: Stability of periodic traveling wave solutions to the Kawahara equation. SIAM J. Appl. Dyn. Syst. 17, 2761–2783 (2018)

    MathSciNet  Google Scholar 

  • Vanden-Broeck, J.: Some new gravity waves in water of finite depth. Phys. Fluids 26, 2385–2387 (1983)

    MathSciNet  Google Scholar 

  • Verschueren, N., Champneys, A.R.: Dissecting the snake: transition from localized patterns to spike solutions. Physica D 419, 132858 (2021)

    MathSciNet  Google Scholar 

  • Wai, P.K.A., Menyuk, C.R., Lee, Y.C., Chen, H.H.: Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers. Opt. Lett. 11, 464 (1986)

    Google Scholar 

  • Webb, K.E., Xu, Y.Q., Erkintalo, M., Murdoch, S.G.: Generalized dispersive wave emission in nonlinear fiber optics. Opt. Lett. 38, 151 (2013)

    Google Scholar 

  • Whitham, G.B.: Linear and nonlinear waves. In: Pure and Applied Mathematics. Wiley, New York (1974)

  • Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos. In: Texts in Applied Mathematics, 2nd edn, vol. 2. Springer, New York (2003)

  • Zufiria, J.A.: Weakly nonlinear non-symmetric gravity waves on water of finite depth. J. Fluid Mech. 180, 371 (1987)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Sprenger.

Additional information

Communicated by Paul Newton

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

PS and MS were supported by NSF-DMS 1812445.

Appendix A: Numerical Computation of Periodic Orbits

Appendix A: Numerical Computation of Periodic Orbits

In this appendix, we discuss the numerical approximation of periodic solutions via a pseudospectral method similar to that used in Ehrnström and Kalisch (2009). We first set the constant of integration \(A=0\) in the fourth-order ODE (1.12):

$$\begin{aligned} -c f + \frac{1}{2}f^2 + \alpha f'' + f'''' = 0. \end{aligned}$$
(A-1)

For each wavenumber k\(2\pi /k\)-periodic solutions f of (A-1) are approximated by a truncated Fourier series

$$\begin{aligned} f \approx F_N = \sum _{n = -{N}}^{N} \hat{f}_n e^{ink\xi }. \end{aligned}$$
(A-2)

Substituting into (A-1) gives the nonlinear equation

$$\begin{aligned} \frac{1}{2}F_N^2 + \sum _{n = -{N}}^{N} \left( -c + \alpha (nk)^2 + (nk)^4\right) \hat{f}_n e^{i n k \xi } = 0. \end{aligned}$$
(A-3)

The projection of this equation onto each Fourier mode \(e^{ink\xi }\), \(n = -N,\ldots , N\) results in a system of \(2N+1\) equations for the \(2N+1\) Fourier coefficients \(\hat{f}_n,\) with constant c,  treated as a continuation parameter.

From linear theory (linearizing (A-1) about \(f=0\)), we have infinitesimal \(2\pi /k\)-periodic solutions with phase velocity \(c_\textrm{p}(k) = - \alpha k^2 + k^4\). Approximate finite amplitude solutions are computed using Matlab’s nonlinear solver fsolve, choosing N large enough, depending on k,  to push the residual below \(10^{-12}\). For example, for \(k = 1\), \(2^6\) Fourier modes are required, while \(2^{12}\) Fourier modes are needed for \(k = 0.005\). The solutions \(f=\tilde{f}\) are found by continuation from the small amplitude solutions as c varies away from \(c=c_\textrm{p}(k).\) This gives the periodic wave amplitude \(a=a(c, k)\) and average \(\tilde{u}(c,k)\) as functions of its velocity and wavenumber. Inverting the relation \(a=\tilde{a}(c,k))\) for each k,  and interpolating using cubic splines, gives the velocity \(c=\tilde{c}(a,k),\) and average \(\overline{u}=\tilde{u}(a,k).\)

In a final step, we can use the Galilean symmetry (1.9) to shift the mean of the periodic solutions to \(\overline{u}=0,\) thereby modifying the wave velocity to \(c(a,k)= \tilde{c}(a,k) - \overline{u}(a,k).\) In so doing, we obtain the two-parameter family of periodic solutions used throughout this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sprenger, P., Bridges, T.J. & Shearer, M. Traveling Wave Solutions of the Kawahara Equation Joining Distinct Periodic Waves. J Nonlinear Sci 33, 79 (2023). https://doi.org/10.1007/s00332-023-09922-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-023-09922-0

Navigation