Skip to main content

Advertisement

Log in

Dynamic Behavior of a General Stochastic HIV Model with Virus-to-Cell Infection, Cell-to-Cell Transmission, Immune Response and Distributed Delays

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we construct a general four-dimensional delayed HIV infection model with virus-to-cell infection, cell-to-cell transmission, CTL immune response and parameter perturbations. By substitution, the four-dimensional delayed stochastic differential equations can be transformed into a degenerate eight-dimensional stochastic differential equations. The existence of the global positive solution of the system is obtained rigorously. By constructing appropriate Lyapunov functions, the existence of a stationary Markov process is derived when the stochastic reproduction number \({\mathcal {R}}_0^s\) is greater than one. Finally, we investigate the effects of noise level and the cell-to-cell transmission on the dynamic behavior of the model. Our model is a general model of the existing stochastic virus infection model, and the theoretical results improve and generalize the existing conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Britton, T.: Stochastic epidemic models: a survey. Math. Biosci. 225(1), 24–35 (2010)

    MathSciNet  Google Scholar 

  • Cai, Y., Jiao, J., Gui, Z., Liu, Y., Wang, W.: Environmental variability in a stochastic epidemic model. Appl. Math. Comput. 329, 210–226 (2018)

    MathSciNet  Google Scholar 

  • Cai, Y., Li, J., Kang, Y., Wang, K., Wang, W.: The fluctuation impact of human mobility on the influenza transmission. J. Frankl. I. 357(13), 8899–8924 (2020)

    MathSciNet  Google Scholar 

  • Chen, S.S., Cheng, C.Y., Takeuchi, Y.: Stability analysis in delayed within-host viral dynamics with both viral and cellular infections. J. Math. Anal. Appl. 442, 642–672 (2016)

    MathSciNet  Google Scholar 

  • Culshaw, R.V., Ruan, S.G.: A delay-differential equation model of HIV infection of CD4\(^+\) T-cells. Math. Biosci. 165, 27–39 (2000)

    Google Scholar 

  • Dalal, N., Greenhalgh, D., Mao, X.: A stochastic model for internal HIV dynamics. J. Math. Anal. Appl. 341, 1084–1101 (2008)

    MathSciNet  Google Scholar 

  • Deng, J., Shu, H., Wang, L., Wang, X.S.: Viral dynamics with immune responses: effects of distributed delays and Filippov antiretroviral therapy. J. Math. Biol. 86(3), 37 (2023)

    MathSciNet  Google Scholar 

  • Feng, T., Qiu, Z., Meng, X., Rong, L.: Analysis of a stochastic HIV-1 infection model with degenerate diffusion. Appl. Math. Comput. 348, 437–455 (2019)

    MathSciNet  Google Scholar 

  • Guo, T., Qiu, Z., Rong, L.: Analysis of an HIV model with immune responses and cell-to-cell transmission. Bull. Malays. Math. Sci. Soc. 43, 581–607 (2020)

    MathSciNet  Google Scholar 

  • Hattaf, K.: A new generalized definition of fractional derivative with non-singular kernel. Computation 8(2), 49 (2020)

    Google Scholar 

  • Hattaf, K.: Global stability and Hopf bifurcation of a generalized viral infection model with multi-delays and humoral immunity. Physica A Stat. Mech. Appl. 545, 123689 (2020)

    MathSciNet  Google Scholar 

  • Hattaf, K.: On the stability and numerical scheme of fractional differential equations with application to biology. Computation 10(6), 97 (2022)

    Google Scholar 

  • Hattaf, K., Yousfi, N.: Modeling the adaptive immunity and both modes of transmission in HIV infection. Computation 6(2), 37 (2018)

    Google Scholar 

  • He, S., Tang, S., Cai, Y., Wang, W., Rong, L.: A stochastic epidemic model coupled with seasonal air pollution: analysis and data fitting. Stoch. Environ. Res. Risk A 34, 2245–2257 (2020)

    Google Scholar 

  • Herz, A.V., Bonhoeffer, S., Anderson, R.M., May, R.M., Nowak, M.A.: Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay. Proc. Natl. Acad. Sci. USA 93, 7247–7251 (1996)

    Google Scholar 

  • Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43(3), 525–546 (2001)

    MathSciNet  Google Scholar 

  • Iwami, S., Takeuchi, J.S., Nakaoka, S., Mammano, F., Clavel, F., Inaba, H., Kobayashi, T., Misawa, N., Aihara, K., Koyanagi, Y., Sato, K.: Cell-to-cell infection by HIV contributes over half of virus infection. Elife 4, e08150 (2015)

    Google Scholar 

  • Khasminskii, R.: Stochastic Stability of Differential Equations. Sijthoff & Noordhoff, Alphen aan den Rijn (1980)

    Google Scholar 

  • Komarova, N.L., Wodarz, D.: Virus dynamics in the presence of synaptic transmission. Math. Biosci. 242(2), 161–171 (2013)

    MathSciNet  Google Scholar 

  • Lai, X., Zou, X.: Modeling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission. SIAM J. Appl. Math. 74, 898–917 (2014)

    MathSciNet  Google Scholar 

  • Lan, G., Yuan, S., Song, B.: The impact of hospital resources and environmental perturbations to the dynamics of SIRS model. J. Frankl. I. 358(4), 2405–2433 (2021)

    MathSciNet  Google Scholar 

  • Liu, Q.: Analysis of a stochastic HIV model with cell-to-cell transmission and Ornstein–Uhlenbeck process. J. Math. Phys. 64(1), 012702 (2023)

    MathSciNet  Google Scholar 

  • Liu, Q., Jiang, D., Hayat, T., Alsaedi, A.: Stationary distribution and extinction of a stochastic HIV-1 infection model with distributed delay and logistic growth. J. Nonlinear Sci. 30(1), 369–395 (2020)

    MathSciNet  Google Scholar 

  • MacDonald, N.: Time Delays in Biological Models. Spring-Verlag, Heidelberg (1978)

    Google Scholar 

  • McMichael, A.J., Rowland-Jones, S.L.: Cellular immune responses to HIV. Nature 410(6831), 980–987 (2001)

    Google Scholar 

  • Mao, X.: Stochastic Differential Equations and Applications, 2nd edn. Horwood, Chichester (2008)

    Google Scholar 

  • Mao, X., Marion, G., Renshaw, E.: Environmental Brownian noise suppresses explosions in population dynamics. Stoch. Proc. Appl. 97(1), 95–110 (2002)

    MathSciNet  Google Scholar 

  • McCune, J.M.: The dynamics of CD4\(^{+}\) T-cell depletion in HIV disease. Nature 410(6831), 974–979 (2001)

    Google Scholar 

  • Merwaiss, F., Czibener, C., Alvarez, D.E.: Cell-to-cell transmission is the main mechanism supporting bovine viral diarrhea virus spread in cell culture. J. Virol. 93(3), e01776-18 (2019)

    Google Scholar 

  • Mittler, J.E., Sulzer, B., Neumann, A.U., Perelson, A.S.: Influence of delayed viral production on viral dynamics in HIV-1 infected patients. Math. Biosci. 152, 143–163 (1998)

    Google Scholar 

  • Nelson, P.W., Murray, J.D., Perelson, A.S.: A model of HIV-1 pathogenesis that includes an intracellular delay. Math. Biosci. 163, 201–215 (2000)

    MathSciNet  Google Scholar 

  • Nicoleta, T.: Drug therapy model with time delays for HIV infection with virus-to-cell and cell-to-cell transmissions. J. Appl. Math. Comput. 59, 677–691 (2019)

    MathSciNet  Google Scholar 

  • Nowak, M.A., Bangham, C.: Population dynamics of immune response to persistent viruses. Science 272, 74–79 (1996)

    Google Scholar 

  • Nowak, M., May, R.M.: Virus Dynamics: Mathematical Principles of Immunology and Virology: Mathematical Principles of Immunology and Virology. Oxford University Press (2000)

  • Okoye, A.A., Picker, L.J.: CD4\(^{+}\) T-cell depletion in HIV infection: mechanisms of immunological failure. Immunol. Rev. 254(1), 54–64 (2013)

    Google Scholar 

  • Perelson, A.S., Nelson, P.W.: Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41, 3–44 (1999)

    MathSciNet  Google Scholar 

  • Perelson, A., Neumann, A.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–1586 (1996)

    Google Scholar 

  • Qesmi, R., Hammoumi, A.: A stochastic delay model of HIV pathogenesis with reactivation of latent reservoirs. Chaos Soliton Fractals 132, 109594 (2020)

    MathSciNet  Google Scholar 

  • Qi, H., Meng, X.: Mathematical modeling, analysis and numerical simulation of HIV: the influence of stochastic environmental fluctuations on dynamics. Math. Comput. Simul. 187, 700–719 (2021)

    MathSciNet  Google Scholar 

  • Rouzine, I.M., Razooky, B.S., Weinberger, L.S.: Stochastic variability in HIV affects viral eradication. Proc. Natl. Acad. Sci. 111(37), 13251–13252 (2014)

    Google Scholar 

  • Shu, H., Chen, Y., Wang, L.: Impacts of the cell-free and cell-to-cell infection modes on viral dynamics. J. Dyn. Differ. Equ. 30, 1817–1836 (2018)

    MathSciNet  Google Scholar 

  • Sigal, A., Kim, J.T., Balazs, A.B., Dekel, E., Mayo, A., Milo, R., Baltimore, D.: Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 477(7362), 95–98 (2011)

    Google Scholar 

  • Singh, A., Razooky, B., Cox, C.D., Simpson, M.L., Weinberger, L.S.: Transcriptional bursting from the HIV-1 promoter is a significant source of stochastic noise in HIV-1 gene expression. Biophys. J. 98(8), L32–L34 (2010)

    Google Scholar 

  • Sourisseau, M., Sol-Foulon, N., Porrot, F., Blanchet, F., Schwartz, O.: Inefficient human immunodeficiency virus replication in mobile lymphocytes. J. Virol. 81(2), 1000–1012 (2007)

    Google Scholar 

  • Tuckwell, H.C., Le Corfec, E.: A stochastic model for early HIV-1 population dynamics. J. Theor. Biol. 195, 451–463 (1998)

    Google Scholar 

  • Wang, Y., Zhou, Y., Brauer, F., Heffernan, J.M.: Viral dynamics model with CTL immune response incorporating antiretroviral therapy. J. Math. Biol. 67, 901–934 (2013)

    MathSciNet  Google Scholar 

  • Wang, J., Guo, M., Liu, X., Zhao, Z.: Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay. Appl. Math. Comput. 291, 149–161 (2016)

    MathSciNet  Google Scholar 

  • Wang, Y., Jiang, D., Hayat, T., Alsaedi, A.: Stationary distribution of an HIV model with general nonlinear incidence rate and stochastic perturbations. J. Frankl. I. 356(12), 6610–6637 (2019)

    MathSciNet  Google Scholar 

  • Wang, Y., Zhao, T., Liu, J.: Viral dynamics of an HIV stochastic model with cell-to-cell infection, CTL immune response and distributed delays. Math. Biosci. Eng. 16(6), 7126–7154 (2019)

    MathSciNet  Google Scholar 

  • Wang, Y., Liu, J., Zhang, X., Heffernan, J.M.: An HIV stochastic model with cell-to-cell infection, B-cell immune response and distributed delay. J. Math. Biol. 86(3), 35 (2023)

    MathSciNet  Google Scholar 

  • Wodarz, D., Klenerman, P., Nowak, M.A.: Dynamics of cytotoxic T-lymphocyte exhaustion. Proc. R. Soc. B Biol. Sci. 265(1392), 191–203 (1998)

    Google Scholar 

  • Xu, J., Zhou, Y.: Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Math. Biosci. Eng. 13, 343–367 (2017)

    MathSciNet  Google Scholar 

  • Yang, Y., Zou, L., Ruan, S.: Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions. Math. Biosci. 270, 183–191 (2015)

    MathSciNet  Google Scholar 

  • Zhao, Y., Yuan, S., Ma, J.: Survival and stationary distribution analysis of a stochastic competitive model of three species in a polluted environment. Bull. Math. Biol. 77, 1285–1326 (2015)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their constructive criticisms and valuable comments, which helped us to improve our study. This work is supported by Shandong Provincial Natural Science Foundation (No. ZR2020MA039, ZR2021MA020), National Natural Science Foundation of China (No. 11871473), and the Fundamental Research Funds for the Central Universities (No. 22CX03030A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Changpin Li.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lu, M. & Jiang, D. Dynamic Behavior of a General Stochastic HIV Model with Virus-to-Cell Infection, Cell-to-Cell Transmission, Immune Response and Distributed Delays. J Nonlinear Sci 33, 97 (2023). https://doi.org/10.1007/s00332-023-09955-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-023-09955-5

Keywords

Mathematics Subject Classification

Navigation