Skip to main content
Log in

Complex Dynamics of a Stochastic SIR Epidemic Model with Vertical Transmission and Varying Total Population Size

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we propose a stochastic SIR epidemic model with vertical transmission and varying total population size. Firstly, we prove the existence and uniqueness of the global positive solution for the stochastic model. Secondly, we establish three thresholds \(\lambda _{1},\) \(\lambda _{2} \) and \(\lambda _{3}\) of the model. The disease will die out when \(\lambda _{1}<0 \) and \(\lambda _{2}<0,\) or \(\lambda _{1}>0\) and \(\lambda _{3}<0\), but the disease will persist when \(\lambda _{1}<0\) and \(\lambda _{2}>0,\) or \( \lambda _{1}>0\) and \(\lambda _{3}>0\) and the law of the solution converge to a unique invariant measure. Moreover, we find that when \(\lambda _{1}<0\) some stochastic perturbations can increase the threshold \(\lambda _{2}\), while others can decrease the threshold \(\lambda _{2}\). That is, some stochastic perturbations enhance the spread of the disease, but others are just the opposite. On the other hand, when \(\lambda _{1}>0\), some stochastic perturbations increase or decrease the threshold \(\lambda _{3}\) with different parameter sets. Finally, we give some numerical examples to illustrate obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Li, M.Y., Smith, H.L., Wang, L.: Global dynamics of an SEIR epidemic model with vertical transmission. SIAM J. Appl. Math. 62(1), 58–69 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Lu, Z., Chi, X., Chen, L.: The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission. Math. Comput. Model. 36(9–10), 1039–1057 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Keeling, M.J., Woolhouse, M.E.J., Shaw, D.J., Louise, M., Chase-Topping, M., Haydon, D.T., Cornell, S.J., Kappey, J., Wilesmith, J., Grenfell, B.T.: Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape. Science 294(5543), 813–817 (2001)

    Article  Google Scholar 

  • May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University, Princeton (2001)

    Book  MATH  Google Scholar 

  • Imhof, L., Walcher, S.: Exclusion and persistence in deterministic and stochastic chemostat models. J. Differ. Equ. 217(1), 26–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Dennis, B.: Allee effects in stochastic populations. Oikos 96(3), 389–401 (2002)

    Article  Google Scholar 

  • Zhu, C., Yin, G.: On competitive Lotka-Volterra model in random environments. J. Math. Anal. Appl. 357(1), 154–170 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Mao, X., Marion, G., Renshaw, E.: Environmental brownian noise suppresses explosions in population dynamics. Stoch. Process. Appl. 97(1), 95–110 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Dieu, N.T.: Asymptotic properties of a stochastic SIR epidemic model with Beddington-Deangelis incidence rate. J. Dyn. Diff. Equ. 30(1), 93–106 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, X.B., Liu, R.J.: The stationary distribution of a stochastic SIQS epidemic model with varying total population size. Appl. Math. Lett. 116, 106974 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, Y., Li, Y., Zhang, Q., Li, A.: Behavior of a stochastic SIR epidemic model with saturated incidence and vaccination rules. Phys. A 501, 178–187 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Gray, A., Greenhalgh, D., Hu, L., Mao, X., Pan, J.: A stochastic differential equation SIS epidemic model. SIAM J. Appl. Math. 71(3), 876–902 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Cai, Y., Kang, Y., Banerjee, M., Wang, W.: A stochastic SIRS epidemic model with infectious force under intervention strategies. J. Diff. Equ. 259(12), 7463–7502 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, X., Chang, S., Shi, Q., Huo, H.: Qualitative study of a stochastic SIS epidemic model with vertical transmission. Phys. A 505, 805–817 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Miao, A., Zhang, T., Zhang, J., Wang, C.: Dynamics of a stochastic SIR model with both horizontal and vertical transmission. J. Appl. Anal. Comput. 8(4), 1108–1121 (2018)

    MathSciNet  MATH  Google Scholar 

  • Ji, C., Jiang, D.: Threshold behaviour of a stochastic SIR model. Appl. Math. Model. 38(21–22), 5067–5079 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Dieu, N.T., Nguyen, D.H., Du, N.H., Yin, G.: Classification of asymptotic behavior in a stochastic SIR model. SIAM J. Appl. Dyn. Syst. 15(2), 1062–1084 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen, D.H., Yin, G., Zhu, C.: Long-term analysis of a stochastic SIRS model with general incidence rates. SIAM J. Appl. Math. 80(2), 814–838 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Du, N.H., Nhu, N.N.: Permanence and extincton for the stochastic SIR epidemic model. J. Diff. Equ. 269(11), 9619–9652 (2020)

    Article  MATH  Google Scholar 

  • Du, N.H., Dieu, N.T., Ky, T.Q., Sam, V.H.: Long-time behavior of a stochastic SIQR model with Markov switching. Acta Math. Vietnam. 45(4), 903–915 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Mao, X.: Stochastic Differential Equations and Applications. Elsevier, New York (2007)

    MATH  Google Scholar 

  • Gardiner, C.W.: Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences. Series in Synergetics. Springer, Berlin (2004)

  • Kallenberg, O.: Foundations of Modern Probability. Springer, New York (2002)

    Book  MATH  Google Scholar 

  • Zhang, X.B., Zhang, X.H.: The threshold of a deterministic and a stochastic SIQS epidemic model with varying total population size. Appl. Math. Model. 91, 749–767 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Hening, A., Nguyen, D.H.: Coexistence and extinction for stochastic Kolmogorov systems. Ann. Appl. Probab. 28(3), 1893–1942 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Evans, S.N., Hening, A., Schreiber, S.J.: Protected polymorphisms and evolutionary stability of patch-selection strategies in stochastic environments. J. Math. Biol. 71(2), 325–359 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Kliemann, W.: Recurrence and invariant measures for degenerate diffusions. Ann. Probab. 15(2), 690–707 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Jarner, S.F., Roberts, G.O.: Polynomial convergence rates of Markov chains. Ann. Appl. Probab. 12(1), 224–247 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Khasminskii, R.: Stochastic stability of differential equations, Sijthoff & Noordhoff, (1980)

  • Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, X.B., Shi, Q., Ma, S.H., Huo, H.F., Li, D.: Dynamic behavior of a stochastic SIQS epidemic model with levy jumps. Nonlinear Dyn. 93(3), 1481–1493 (2018)

    Article  MATH  Google Scholar 

  • Li, S., Guo, S.: Persistence and extinction of a stochastic SIS epidemic model with regime switching and levy jumps. Discret. Contin. Dyn. Syst. B 187, 308–336 (2021)

    MATH  Google Scholar 

  • Yang, Q., Zhang, X., Jiang, D.: Asymptotic behavior of a stochastic SIR model with general incidence rate and nonlinear levy jumps. Nonlinear Dyn. 107, 2975–2993 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Nature Science Foundation of China (12361041, 12361029, 12161051), Science and Technology Plan Foundation of Gansu Province of China (No. 21JR7RA216, 21JR7RA209), the Development Program for HongLiu Outstanding Young Teachers in Lanzhou University of Technology (Q201308) and the HongLiu first-class disciplines Development Program of Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Bing Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Anthony Bloch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XB., Zheng, L. Complex Dynamics of a Stochastic SIR Epidemic Model with Vertical Transmission and Varying Total Population Size. J Nonlinear Sci 33, 108 (2023). https://doi.org/10.1007/s00332-023-09960-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-023-09960-8

Keywords

Navigation