Skip to main content
Log in

Maxwell’s Equations in a Plane Waveguide with Nonhomogeneous Nonlinear Permittivity: Analytical and Numerical Approaches

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The paper focuses on the problem on monochromatic electromagnetic waves propagation in a shielded planar dielectric waveguide. The waveguide is filled with nonhomogeneous nonlinear medium. The nonlinearity is expressed by nonnegative unbounded monotonically increasing function with power growth. Such nonlinearity is a generalization of the well-known Kerr nonlinear law. The existence of propagation constants and eigenwaves is proved. Besides, it is proved that the studied problem has nonlinearized solutions as well as linearized ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

This is not applicable.

References

  • Adams, M.J.: An Introduction to Optical Waveguides. John Wiley & Sons, Chichester - New York - Brisbane - Toronto (1981)

    Google Scholar 

  • Akhmediev, N.N., Ankevich, A.: Solitons, Nonlinear Pulses and Beams. Chapman and Hall, London (1997)

    Google Scholar 

  • Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14(4), 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Boardman, A.D., Egan, P., Lederer, F., Langbein, U., Mihalache, D.: Third-order nonlinear electromagnetic TE and TM guided waves. In: Ponath, H.-E., Stegeman, G.I. (eds.) Reprinted from Nonlinear Surface Electromagnetic Phenomena. Elsevier Sci. Publ, North-Holland, Amsterdam London New York Tokyo (1991)

    Google Scholar 

  • Cazenave, T.: Semilinear Schrödinger Equations, Volume 10 of Courant Lecture Notes in Mathematics. American Mathematical Society, Providence (2003)

    Google Scholar 

  • Chen, Q., Wang, Z.H.: Exact dispersion relations for tm waves guided by thin dielectrics films bounded by nonlinear media. Opt. Lett. 18(4), 260–262 (1993)

    Article  Google Scholar 

  • Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1. Interscience Publishers Inc., New York (1953)

    MATH  Google Scholar 

  • Huang, J.H., Chang, R., Leung, P.T., Tsai, D.P.: Nonlinear dispersion relation for surface plasmon at a metal-Kerr medium interface. Opt. Commun. 282, 1412–1415 (2009)

    Article  Google Scholar 

  • Kielich, S.: Molekularna Optyka Nieliniowa (Molecular Nonlinear Optics). PWN, Warszawa (in Polish) (1977)

    Google Scholar 

  • Krasnosel’skii, M.A.: Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon Press, Oxford - London - New York - Paris (1964)

    MATH  Google Scholar 

  • Kurseeva, V.Y., Smirnov, G.Y.: On the existence of infinitely many eigenvalues in a nonlinear Sturm-Liouville problem arising in the theory of waveguides. Differ. Equ. 53(11), 1419–1427 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Course of Theoretical Physics. Electrodynamics of Continuous Media, vol. 8. Butterworth-Heinemann, Oxford (1993)

    Google Scholar 

  • Marcuse, D.: Light Transmission Optics. Van Nostrand Reinhold Company, New York (1972)

    Google Scholar 

  • Marcuse, D.: Theory of Dielectric Optical Waveguides, 2nd edn. Academic Press, Cambridge (1991)

    Google Scholar 

  • Mihalache, D., Stegeman, G.I., Seaton, C.T., Wright, E.M., Zanoni, R., Boardman, A.D., Twardowki, T.: Exact dispersion relations for transverse magnetic polarized guided waves at a nonlinear interface. Opt. Lett. 12(3), 187–189 (1987)

    Article  Google Scholar 

  • Moskaleva, M.A., Kurseeva, V.Y., Valovik, D.V.: Asymptotical analysis of a nonlinear Sturm–Liouville problem: linearisable and non-linearisable solutions. Asymptot. Anal. 119(1–2), 39–59 (2020)

    MathSciNet  MATH  Google Scholar 

  • Naimark, M.A.: Linear Differential Operators, Part I: Elementary Theory of Linear Differential Operators. Part II: Linear Differential Operators in Hilbert Space. Frederick Ungar Publishing Co., New York (1967)

    MATH  Google Scholar 

  • Osmolovskii, V.G.: Nonlinear Sturm–Liouville Problem. Saint Petersburg University Press, Saint Petersburg (2003)

    Google Scholar 

  • Petrovsky, I.G.: Lectures on the Theory of Ordinary Differential Equations. Moscow State University, Moscow (1984). ((in Russian))

    Google Scholar 

  • Schürmann, H.W., Smirnov, Yu.G., Shestopalov, Yu.V.: Propagation of TE-waves in cylindrical nonlinear dielectric waveguides. Phys. Rev. E 71(1), 016614 (2005)

    Article  Google Scholar 

  • Shen, Y.R.: The Principles of Nonlinear Optics. John Wiley and Sons, New York-Chicester-Brisbane-Toronto-Singapore (1984)

    Google Scholar 

  • Smol’kin, E.Y., Valovik, D.V.: Guided electromagnetic waves propagating in a two-layer cylindrical dielectric waveguide with inhomogeneous nonlinear permittivity. Adv. Math. Phys. (2015). https://doi.org/10.1155/2015/614976

    Article  MathSciNet  MATH  Google Scholar 

  • Stretton, J.A.: Electromagnetic Theory. McGraw Hill, New york (1941)

    Google Scholar 

  • Tikhov, S., Valovik, D.: Theory of nonlinear transverse-magnetic guided waves in a plane waveguide filled with nonhomogeneous nonlinear medium. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2102694

    Article  Google Scholar 

  • Tikhov, Stanislav V., Valovik, Dmitry V.: Nonlinearizable solutions in an eigenvalue problem for maxwell’s equations with nonhomogeneous nonlinear permittivity in a layer. Stud. Appl. Math. 149(3), 565–587 (2022)

    Article  MathSciNet  Google Scholar 

  • Unger, H.-G.: Planar Optical Waveguides and Fibres. Clarendon Press, Oxford (1977)

    Google Scholar 

  • Vainberg, M.M.: Variational Methods for the Study of Nonlinear Operators. Holden-Day Series in Mathematical Physics, 1st edn. Holden-Day, San Francisco (1964)

    Google Scholar 

  • Vainstein, L.A.: Electromagnetic Waves, p. 440. Radio i svyaz, Moscow (1988)

    Google Scholar 

  • Valovik, D.V.: On a nonlinear eigenvalue problem related to the theory of propagation of electromagnetic waves. Differ. Equ. 54(2), 168–179 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Valovik, D.V.: On spectral properties of the Sturm–Liouville operator with power nonlinearity. Monatshefte für Math. 188(2), 369–385 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation [grant number 18-71-10015].

Author information

Authors and Affiliations

Authors

Contributions

SV is responsible for numerical study (calculations, software implementations, visualization), writing and editing of the manuscript; DV is responsible for analytical investigation and supervision of the whole research.

Corresponding author

Correspondence to D. V. Valovik.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical Approval

All authors have read and accepted “Ethical Responsibilities of Authors”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhov, S.V., Valovik, D.V. Maxwell’s Equations in a Plane Waveguide with Nonhomogeneous Nonlinear Permittivity: Analytical and Numerical Approaches. J Nonlinear Sci 33, 105 (2023). https://doi.org/10.1007/s00332-023-09962-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-023-09962-6

Keywords

Mathematics Subject Classification

Navigation