Skip to main content
Log in

J-Trajectories in 4-Dimensional Solvable Lie Group \(\textrm{Sol}_1^4\)

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

J-trajectories are arc-length-parameterized curves in almost Hermitian manifolds, which satisfy the equation \(\nabla _{{\dot{\gamma }}}{\dot{\gamma }}=q J {\dot{\gamma }}\). In this paper, J-trajectories in the solvable Lie group \(\textrm{Sol}_1^4\) are investigated. J-trajectories of osculating order 2 and 3, homogeneous J-trajectories and J-trajectories in subspace\(\textrm{Nil}_3\) are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrada, A., Origlia, M.: Locally conformally Kähler structures on unimodular Lie groups. Geom. Dedicata 179, 197–216 (2015)

    MathSciNet  MATH  Google Scholar 

  • Andrada, A., Barberis, M.L., Dotti, I.G., Ovando, G.P.: Product structures on four dimensional solvable Lie algebras. Homol. Homot. Appl. 7(1), 9–37 (2005)

    MathSciNet  MATH  Google Scholar 

  • Angella, D., Origlia, M.: Locally conformally Kähler structures on four-dimensional solvable Lie algebras. Complex Manifolds 7, 1–35 (2020)

    MathSciNet  MATH  Google Scholar 

  • Angella, D., Bazzoni, G., Parton, M.: Structure of locally conformally symplectic Lie algebras and solvmanifolds. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 20(5), 373–411 (2020). arXiv:1704.01197v2 [math.DG]

    MathSciNet  MATH  Google Scholar 

  • Anosov, D.V., Sinaĭ, Ja.G.: Certain smooth ergodic systems. Russ. Math. Surv. 22(5), 103–167 (1967)

    MathSciNet  Google Scholar 

  • Apostolov, V., Calderbank, D., Gauduchon, P.: Hamiltonian \(2\)-forms in Kähler geometry. I. General theory. J. Differ. Geom. 73(3), 359–412 (2006)

    MATH  Google Scholar 

  • Arnol’d, V.I.: First steps in symplectic topology. Uspekhi Mat. Nauk. 41(6), 3–18 (1986). English translation: Russ. Math. Surv. 41, 1–21 (1986)

  • Arnol’d, V.I.: Some remarks on flows of line elements and frames. Sov. Math. Dokl. 2, 562–564 (1961)

    MATH  Google Scholar 

  • Arvanitoyeorgos, A., Souris, N.P.: Motion of charged particle in a class of homogeneous spaces. Math. Phys. Anal. Geom. 23, 22 (2020)

    MathSciNet  MATH  Google Scholar 

  • Ateş, O., Munteanu, M.I., Nistor, A.I.: Periodic \(J\)-trajectories on \(\mathbb{R} \times \mathbb{S} ^3\). J. Geom. Phys. 133, 141–152 (2018)

    MathSciNet  MATH  Google Scholar 

  • Ateş, O., Munteanu, M.I., Nistor, A.I.: Dynamics on \(\mathbb{S} ^3\) and the Hopf fibration. Appl. Math. Comput. 347, 429–441 (2019)

    MathSciNet  MATH  Google Scholar 

  • Barros, M., Romero, A.: Magnetic vortices. EPL 77(3), 34002 (2007)

    Google Scholar 

  • Barros, M., Cabrerizo, J.L., Fernández, M., Romero, A.: Magnetic vortex filament flows. J. Math. Phys. 488, 082904 (2007)

    MathSciNet  MATH  Google Scholar 

  • Belgun, F.A.: On the metric structure of non-Kähler complex surfaces. Math. Ann. 317, 1–40 (2000)

    MathSciNet  MATH  Google Scholar 

  • Biggs, R., Remsing, C.C.: On the classification of real four-dimensional Lie groups. J. Lie Theory 26(4), 1001–1035 (2016)

    MathSciNet  MATH  Google Scholar 

  • Bolsinov, A., Morales-Ruiz, J., Zung, N.T.: Geometry and Dynamics of Integrable Systems. Advanced Courses in Mathematics, CRM Barcelona. Birkhäuser, Basel (2016)

    MATH  Google Scholar 

  • Bolsinov, A.V., Matveev, V.S., Rosemann, S.: Local normal forms for c-projectively equivalent metrics and proof of the Yano-Obata conjecture in arbitrary signature. Proof of the projective Lichnerowicz conjecture for Lorentzian metrics. Ann. Sci. Ecole Normale Super. 6(54), 1465–1540 (2021)

    MathSciNet  MATH  Google Scholar 

  • Cabrerizo, J.L.: Magnetic fields in 2D and 3D sphere. J. Nonlinear Math. Phys. 20(3), 440–450 (2013)

    MathSciNet  MATH  Google Scholar 

  • Dragomir, S., Ornea, L.: Locally Conformal Kähler Geometry. Progress in Math. vol. 155. Birkhäuser (1998)

  • Erjavec, Z., Inoguchi, J.: On magnetic curves in almost cosymplectic Sol space. Results Math. 75, 113 (2020)

    MathSciNet  MATH  Google Scholar 

  • Erjavec, Z., Inoguchi, J.: Magnetic curves in \(\mathbb{H} ^3\times \mathbb{R} \). J. Korean Math. Soc. 58(6), 1501–1511 (2021)

    MathSciNet  MATH  Google Scholar 

  • Erjavec, Z., Inoguchi, J.: \(J\)-trajectories in 4-dimensional solvable Lie groups \(\rm Sol _0^4\). Math. Phys. Anal. Geom. 25, 8 (2022)

    MATH  Google Scholar 

  • Esen, O., de León, M., Sardón, C., Zajşc, M.: Hamilton-Jacobi formalism on locally conformally symplectic manifolds. J. Math. Phys. 62(3), 033506 (2021)

    MathSciNet  MATH  Google Scholar 

  • Fassò, F., Sansonetto, N.: Nearly-integrable almost-symplectic Hamiltonian systems. arXiv:1601.00465 (2016)

  • Fassò, F., Sansonetto, N.: Integrable almost-symplectic Hamiltonian systems. J. Math. Phys. 48, 092902 (2007)

    MathSciNet  MATH  Google Scholar 

  • Filipkiewicz, R.: Four dimensional geometries, Ph.D. thesis. University of Warwick (1983)

  • Ginzburg, V. L.: A charge in a magnetic field: Arnold’s problems 1981–9, 1982-24, 1984–4, 1994–14, 1994–35, 1996–17, and 1996–18. In: Arnold, V.I. (ed.) Arnold’s problems. Springer-Verlag and Physis, pp. 395–401 (2004)

  • Hasegawa, K., Kamishima, Y.: Locally conformally Kähler structures on homogeneous spaces. In: Geometry and Analysis on Manifolds. Progr. Math., vol. 308. Birkhäuser/Springer, pp. 353–372 (2015)

  • Hasegawa, K.: Complex and Kähler structures on compact solvmanifolds. J. Symplectic Geom. 3, 749–767 (2005)

    MathSciNet  MATH  Google Scholar 

  • Hashinaga, T.: On the minimality of the corresponding submanifolds to four-dimensional solvsolitons. Hiroshima Math. J. 44(2), 173–191 (2014)

    MathSciNet  MATH  Google Scholar 

  • Hillman, J.A.: Geometries and infrasolvmanifolds in dimension \(4\). Geom. Dedicata 129, 57–72 (2007)

    MathSciNet  MATH  Google Scholar 

  • Hosseinzadeh, V., Nozari, K.: Covariant statistical mechanics of non-Hamiltonian systems. Int. J. Geom. Methods Mod. Phys. 15(02), 1850017 (2018)

    MathSciNet  MATH  Google Scholar 

  • Inoguchi, J.: \(J\)-trajectories in locally conformal Kähler manifolds with parallel anti-Lee field. Int. Electron. J. Geom. 13(2), 30–44 (2020)

    MathSciNet  MATH  Google Scholar 

  • Inoguchi, J., Lee, J.-E.: \(J\)-trajectories in Vaisman manifolds. Differ. Geom. Appl. 82, 101882 (2022)

    MathSciNet  MATH  Google Scholar 

  • Inoguchi, J., Munteanu, M.I.: Periodic magnetic curves on Berger spheres. Tohoku Math. J. 69(1), 113–128 (2017)

    MathSciNet  MATH  Google Scholar 

  • Inoguchi, J., Munteanu, M.I., Nistor, A.I.: Magnetic curves on quasi-Sasakian 3-manifolds. Anal. Math. Phys. 9(1), 43–61 (2019)

    MathSciNet  MATH  Google Scholar 

  • Inoue, M.: On surfaces of class \(\rm VII _0\). Invent. Math. 24, 269–310 (1974)

    MathSciNet  MATH  Google Scholar 

  • Jo, J.H., Lee, J.B.: Nielsen type numbers and homotopy minimal periods for maps on solvmanifolds with \(\rm Sol _1^4\)-geometry. Fixed Point Theory Appl. 175, 1–15 (2015)

    Google Scholar 

  • Kamishima, Y.: Note on locally conformal Kähler surfaces. Geom. Dedicata 84, 115–124 (2001)

    MathSciNet  MATH  Google Scholar 

  • Kiyohara, K., Topalov, P.: On Liouville integrability of \(h\)-projectively equivalent Kähler metrics. Proc. Am. Math. Soc. 139(1), 231–242 (2010)

    MATH  Google Scholar 

  • Lauret, J.: Ricci soliton solvmanifolds. J. Reine Angew. Math. 650, 1–21 (2011)

    MathSciNet  MATH  Google Scholar 

  • Lee, K.B., Thuong, S.: Infra-solvmanifolds of \(\rm Sol _1^4\). J. Korean Math. Soc. 52, 1209–1251 (2015)

    MathSciNet  MATH  Google Scholar 

  • MacCallum, M.A.H.: On the classification of the real four-dimensional Lie algebras. In: Harvey, A. (ed.) On Einstein’s Path, pp. 299–317. Springer, New York (1999)

    MATH  Google Scholar 

  • Matveev, V.S., Rosemann, S.: Proof of the Yano-Obata conjecture for \(h\)-projective transformations. J. Differ. Geom. 92, 221–261 (2012)

    MathSciNet  MATH  Google Scholar 

  • Munteanu, M.I., Nistor, A.I.: Magnetic curves in the generalized Heisenberg group. Nonlinear Anal. 214, 112571 (2021)

    MathSciNet  MATH  Google Scholar 

  • Ornea, L.: Locally conformally Kähler manifolds. A selection of results. Lecture notes of Seminario Interdisciplinare di Matematica, 4, 121–152 (2005) arXiv:math/0411503v2 [math.DG]

  • Otsuki, T., Tashiro, Y.: On curves in Kaehlerian spaces. Math. J. Okayama Univ. 4, 57–78 (1954)

    MathSciNet  MATH  Google Scholar 

  • Ovando, G.: Invariant complex structures on solvable real Lie groups. Manuscr. Math. 103, 19–30 (2000)

    MathSciNet  MATH  Google Scholar 

  • Ovando, G.: Complex, symplectic and Kähler structures on four dimensional Lie groups. Rev. Un. Mat. Argentina 45(2), 55–67 (2004)

    MathSciNet  MATH  Google Scholar 

  • Snow, J.E.: Invariant complex structures on four-dimensional solvable real Lie groups. Manuscr. Math. 66, 397–412 (1990)

    MathSciNet  MATH  Google Scholar 

  • Song, C., Sun, X., Wang, Y.: Geometric solitons of Hamiltonian flows on manifolds. J. Math. Phys. 54(12), 121505 (2013)

    MathSciNet  MATH  Google Scholar 

  • Thuong, S.V.: Metrics on 4-dimensional unimodular Lie groups. Ann. Glob. Anal. Geom. 51, 109–128 (2017)

    MathSciNet  MATH  Google Scholar 

  • Thuong, S.V.: Classification of closed manifolds with \(\rm Sol _1^4\)-geometry. Geom. Dedicata 199, 373–397 (2019)

    MathSciNet  Google Scholar 

  • Tomter, P.: Constant mean curvature surfaces in the Heisenberg group. Proc. Sympos. Pure Math. 54, 485–495 (1993)

    MathSciNet  MATH  Google Scholar 

  • Tricerri, F.: Some examples of locally conformal Kähler manifolds. Rend. Sem. Mat. Univ. Politec. Torino 40, 81–92 (1982)

    MathSciNet  MATH  Google Scholar 

  • Vaisman, I.: On locally conformal almost Kähler manifolds. Isr. J. Math. 24, 338–351 (1976)

    MATH  Google Scholar 

  • Vaisman, I.: Non-Kähler metrics on geometric complex surfaces. Rend. Sem. Mat. Univ. Politec. Trino 45(3), 117–123 (1987)

    MATH  Google Scholar 

  • Vaisman, I.: Hamiltonian vector fields on almost symplectic manifolds. J. Math. Phys. 54, 092902 (2013)

    MathSciNet  MATH  Google Scholar 

  • Wall, C.T.C.: Geometries and geometric structures in real dimension 4 and complex dimension 2. In: Geometry and Topology. Lecture Notes in Math., vol. 1167, pp. 268–292 (1985)

  • Wall, C.T.C.: Geometric structures on compact complex analytic surfaces. Topology 25(2), 119–153 (1986)

    MathSciNet  MATH  Google Scholar 

  • Zung, N.T.: A conceptual approach to the problem of action-angle variables. Arch. Ration. Mech. Anal. 229, 789–833 (2018) arXiv:1706.08859v2 [math.DS]

Download references

Acknowledgements

We would like to thank the anonymous reviewer for careful reading of our manuscript and for the constructive comments and suggestions for improvement of this paper.

Funding

The second author is partially supported by JSPS Kakenhi JP15K04834 JP19K03461, JP23K03081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zlatko Erjavec.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interests.

Additional information

Communicated by Anthony Bloch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Curves in LCK Manifolds

Definition 3

If \(\gamma \) is a curve in a Riemannian manifold M, parametrized by arc length s, we say that \(\gamma \) is a Frenet curve of osculating order r if there exist orthonormal vector fields \(E_1\), \(E_2, \ldots ,E_r\) along \(\gamma \) such that

$$\begin{aligned}&{\dot{\gamma }}=E_1 ,\,\, \nabla _{{\dot{\gamma }}} E_1 =\kappa _1 E_2 ,\,\, \nabla _{{\dot{\gamma }}} E_2 =-\kappa _1 E_1 +\kappa _2 E_3, \ldots ,\nonumber \\&\nabla _{{\dot{\gamma }}} E_{r-1} =-\kappa _{r-2} E_{r-2} +\kappa _{r-1} E_r ,\,\, \nabla _{{\dot{\gamma }}} E_r =-\kappa _{r-1} E_{r-1}, \end{aligned}$$
(17)

where \(\kappa _1, \kappa _2, \ldots , \kappa _{r-1}\) are positive \(C^\infty \) functions of s. The function \(\kappa _j\) is called the j-th curvature of \(\gamma \).

A geodesic is regarded as a Frenet curve of osculating order 1. A circle is defined as a Frenet curve of osculating order 2 with constant \(\kappa _1\). A helix of order r is a Frenet curve of osculating order r, such that all the curvatures \(\kappa _1,\kappa _2, \ldots , \kappa _{r-1}\) are constant.

For Frenet curves in almost Hermitian manifolds, we recall the following notion:

Definition 4

Let \(\gamma (s)\) be a Frenet curve of osculating order \(r>0\) in an almost Hermitian manifold (MJg). The complex torsions \(\tau _{ij}\) (\(1\le i<j\le r\)) are smooth functions along \(\gamma \) defined by \(\tau _{ij}=g(E_{i},JE_{j})\). A helix of order r in (MJg) is said to be a holomorphic helix of order r if all complex torsions are constant. In particular holomorphic helices of order 2 are called holomorphic circles.

Now let \(\gamma (s)\) be a normal J-trajectory of charge q in an LCK surface \(M=(M,J,g)\). First we observe that the first curvature \(\kappa _1\) is constant \(\vert q \vert \) by comparing the J-trajectory equation and the Frenet formulas (17). The Frenet formulas imply that the first normal vector field \(E_2\) is given by \(E_2=\pm J{\dot{\gamma }}\). Let \(\varepsilon =q/ \vert q \vert \), then we have \(E_2=\varepsilon \,J{\dot{\gamma }}\) and \(\kappa _1=\varepsilon q>0\).

Remark A.1

If a Frenet curve \(\gamma \) in an almost Hermitian manifold (MJg) is a J-trajectory, then

$$\begin{aligned} \tau _{12}=g(E_1,JE_2) =-\varepsilon . \end{aligned}$$

If M is a Kähler manifold, then every J-trajectory is a holomorphic circle. This fact is closely related to the so-called Yano-Obata conjecture. In the complex projective space \(\mathbb {C}P^n(c)\) of constant holomorphic sectional curvature \(c>0\), every h-planar curve lies in a complex projective line. Moreover, the Lie group of h-projective transformations is strictly larger than holomorphic isometry group. In Matveev and Rosemann (2012) and Bolsinov et al. (2021) is proved that the identity components of h-projective transformations on a compact Kähler manifold (MJg) of complex dimension \(>1\) coincides with that of holomorphic isometry group unless M is isomorphic to \(\mathbb {C}P^n(c)\). On the other hand, in Kiyohara and Topalov (2010) is showed that under suitable non-degeneracy condition, compact Kähler manifolds admitting h-projectively equivalent metrics are biholomorphically equivalent to complex projective space.

by using the formula (2) and Frenet equations, we have

$$\begin{aligned} 2\kappa _{2}E_{3}= 2\varepsilon (\nabla _{{\dot{\gamma }}}J){\dot{\gamma }}= \varepsilon (\omega (E_2)E_1-\omega (E_1)E_2+A). \end{aligned}$$
(18)

Equation (18) implies that if M is Kähler, then \(\kappa _2=0\). This conclusion is consistent with the fact “every J-trajectory of a Kähler manifold is a holomorphic circle" mentioned in Remark A.1. In addition, we notice that \(\kappa _2=0\) along \(\gamma \) if and only if \((\nabla _{{\dot{\gamma }}}J){\dot{\gamma }}=0\) holds. Note that (18) is rewritten as

$$\begin{aligned} 2\kappa _{2}E_{3}=\varepsilon (A-g(A,E_1)E_1-g(A,E_2)E_2). \end{aligned}$$
(19)

Equation (19) implies that every J-trajectory satisfies \(\kappa _2\tau _{13}=\kappa _2\tau _{23}=0\). Moreover from (19) we notice that \(\gamma \) is of order 2 if and only if

$$\begin{aligned} A=g(A,E_1)E_1+g(A,E_2)E_2 \end{aligned}$$

along \(\gamma \). In other words, \(\gamma \) is of osculating order 2 if and only of \(A_\gamma \) lies in the osculating plane of \(\gamma \).

Proposition A.1

(Erjavec and Inoguchi 2022) Let \(\gamma \) be a non-geodesic J-trajectory with strength \(q\not =0\) parametrized by arc length in an LCK manifold M whose anti-Lee field has constant length. Then, the first and the second curvatures of \(\gamma \) are given by:

$$\begin{aligned} \kappa _1=\vert q \vert ,\quad \kappa _2=\frac{1}{2} \sqrt{ \vert A \vert ^2-\omega ({\dot{\gamma }})^2- \omega (J{\dot{\gamma }})^2 }. \end{aligned}$$
(20)

In particular, \(\kappa _1\) is constant.

Proposition A.2

(Erjavec and Inoguchi 2022) Let \(\gamma \) be a non-geodesic J-trajectory with strength \(q\not =0\) parametrized by arc length in an LCK manifold M whose anti-Lee field has constant length. Assume that \(\gamma \) is a curve of osculating order \(\ge 3\). Then, we have

$$\begin{aligned} 4\kappa _{2}{\dot{\kappa }}_{2} = \omega (J{\dot{\gamma }}) g(\nabla _{{\dot{\gamma }}}A,{\dot{\gamma }}) -\omega ({\dot{\gamma }}) g(\nabla _{{\dot{\gamma }}}A,J{\dot{\gamma }}) -2\omega ({\dot{\gamma }})\kappa _2^2. \end{aligned}$$
(21)

Assuming that the order of \(\gamma \) is \(r\ge 3\) and \(\kappa _2\not =0\), we obtain (see Erjavec and Inoguchi 2022):

$$\begin{aligned} \nabla _{{\dot{\gamma }}}A =\varepsilon (2{\dot{\kappa }}_{2}+\kappa _{2}\omega ({\dot{\gamma }}))E_3 +2\varepsilon \kappa _{2}\kappa _{3}E_4. \end{aligned}$$

Appendix B: Circles in the Poincaré Upper Half Plane

1.1 B.1 Signed Curvature

Let us consider arc-length-parametrized curve \({\underline{\gamma }}(s)=(x(s),y(s))\) in the upper half plane \(\mathbb {H}\) equipped with Poincaré metric \({\bar{g}}=(dx^2+dy^2)/y^2\) and complex structure

$$\begin{aligned} J\frac{\partial }{\partial x}=-\frac{\partial }{\partial y}, \quad J\frac{\partial }{\partial y}=\frac{\partial }{\partial x}. \end{aligned}$$

Take a global orthonormal frame field

$$\begin{aligned} {\bar{e}}_1=y\frac{\partial }{\partial x}, \quad {\bar{e}}_2=y\frac{\partial }{\partial y}. \end{aligned}$$

Then, its dual coframe field is given by \(\{{\bar{\vartheta }}^1=dx/y,{\bar{\vartheta }}^2=dy/y\}\). The connection form is computed as

$$\begin{aligned} {\bar{\omega }}_{2}^{\>\>1}=-\frac{1}{y}dx, \end{aligned}$$

and the Levi-Civita connection \({\overline{\nabla }}\) of \(\mathbb {H}\) is given by

$$\begin{aligned} {\overline{\nabla }}_{{\bar{e}}_1}{\bar{e}}_1={\bar{e}}_2, \qquad {\overline{\nabla }}_{{\bar{e}}_1}{\bar{e}}_2=-{\bar{e}}_1. \end{aligned}$$

Since \(\gamma (s)\) is arc-length-parameterized, we have \({\dot{x}}(s)^2+{\dot{y}}(s)^2=y(s)^2\). The unit tangent vector field \({\overline{T}}(s)\) and unit normal vector field \({\bar{N}}(s)=J{\overline{T}}(s)\) are given by

$$\begin{aligned}{} & {} {\overline{T}}(s)={\dot{x}}(s)\frac{\partial }{\partial x}+ {\dot{y}}(s)\frac{\partial }{\partial y}=X(s){\bar{e}}_1+Y(s){\bar{e}}_2, \\{} & {} {\overline{N}}(s)={\dot{y}}(s)\frac{\partial }{\partial x}- {\dot{x}}(s)\frac{\partial }{\partial y}=Y(s){\bar{e}}_1-X(s){\bar{e}}_2, \end{aligned}$$

where

$$\begin{aligned} X(s)=\frac{{\dot{x}}(s)}{y(s)}, \quad Y(s)=\frac{{\dot{y}}(s)}{y(s)}. \end{aligned}$$

Denote by \({\overline{\nabla }}\) the Levi-Civita connection of \(\mathbb {H}\), we have

$$\begin{aligned} {\overline{\nabla }}_{ \dot{ {\underline{\gamma }}}}{\overline{T}}= \left( {\dot{X}}(s)-X(s)Y(s)\right) \,{\bar{e}}_1 + \left( {\dot{Y}}(s)+X(s)^2\right) \,{\bar{e}}_2 \end{aligned}$$

Thus, the signed geodesic curvature \({\bar{\kappa }}(s)\) is computed as

$$\begin{aligned} {\bar{\kappa }}(s)=-X(s){\dot{Y}}(s)+{\dot{X}}(s)Y(s)-X(s). \end{aligned}$$
(22)

Hence,

$$\begin{aligned} {\bar{\kappa }}(s)=-\frac{\>\>x^{\prime }(s)y^{\prime \prime }(s) -x^{\prime \prime }(s)y^{\prime }(x)\>\>}{y(s)^2} -\frac{\>x^{\prime }(s)\>}{y(s)}. \end{aligned}$$

Since \(X(s)^2+Y(s)^2=1\), we may put

$$\begin{aligned} X(s)=\cos \phi (s), \quad Y(s)=\sin \phi (s) \end{aligned}$$

for some function \(\phi (s)\). From (22), the angle function \(\phi (s)\) satisfies

$$\begin{aligned} \frac{d\phi }{ds}(s)+\cos \phi (s)=-{\bar{\kappa }}(s). \end{aligned}$$
(23)

1.2 B.2 Magnetic Curves

The Kähler form \({\bar{\Omega }}={\bar{g}}(\cdot ,J)\) of \(\mathbb {H}\) is a magnetic field on \(\mathbb {H}\). The magnetic curve equation with respect to the magnetic field (called the Kähler magnetic field) \(-{\bar{\Omega }}\) is:

$$\begin{aligned} {\overline{\nabla }}_{ \dot{ {\underline{\gamma }}}} \dot{{\underline{\gamma }}}=qJ\dot{{\underline{\gamma }}}. \end{aligned}$$

Since \({\overline{N}}(s))=J\dot{{\underline{\gamma }}}\), the magnetic curve equation is rewritten as:

$$\begin{aligned} {\overline{\nabla }}_{ \dot{ {\underline{\gamma }}}} {\overline{T}}=q{\overline{N}}. \end{aligned}$$

This shows that Kähler magnetic curves are nothing but Riemannian circles of signed curvature q.

Note that the system of Kähler magnetic curve equations is rewritten as:

$$\begin{aligned} {\dot{X}}(s)-X(s)Y(s)=qY(s), \quad {\dot{Y}}(s)+X(s)^2=-qX(s) \end{aligned}$$
(24)

Now let us determine Riemannian circles.

1.2.1 B.2.1 The Case \(\phi \) is Constant

Assuming \({\bar{\kappa }}=q\) is a nonzero constant, from (23) we have \(q=-\cos \phi \). Hence, we get \(0<\vert q \vert <1\) and \(\sin \phi =\pm \sqrt{1-q^2}\). Thus,

$$\begin{aligned} X=-q, \quad Y=\pm \sqrt{1-q^2}. \end{aligned}$$

In case \(\vert q \vert =1\), we have \(\sin \phi =0\). This implies that \(y(s)>0\) is a constant. Namely \({\bar{\gamma }}\) is a horizontal line. The arc length parametrization is given by

$$\begin{aligned} x(s)=\pm y_{0}s+x_{0}, \quad y(s)=y_0>0. \end{aligned}$$

Thus, \({\underline{\gamma }}\) is a horizontal line in the upper half plane.

Next, if \(0<\vert q \vert <1\), then we have \(\sin \phi \not =0\). Moreover since

$$\begin{aligned} \frac{dx}{ds}=y\cos \phi , \quad \frac{dy}{ds}=y\sin \phi , \end{aligned}$$

we get

$$\begin{aligned} \frac{dy}{ds}=\pm y \sqrt{1-q^2},\quad \frac{dx}{dy}=\cot \phi =\frac{\mp q}{\sqrt{1-q^2}}. \end{aligned}$$

Thus, we have the arc length parametrization

$$\begin{aligned} x=\frac{\mp q y_0}{\sqrt{1-q^2}}\,\left( \exp (\pm \sqrt{1-q^2}\,s)-1 \right) +x_0, \quad y=y_0 \exp (\pm \sqrt{1-q^2}\,s),\quad y_0>0. \end{aligned}$$

where \(x(0)=x_0\) and \(y(0)=y_0\). The Kähler magnetic trajectory is an oblique half line \(\sqrt{1-q^2}x=\pm q(y-y_0)\).

1.2.2 B.2.2 The Case \(\phi \) is Non-constant

Assuming again \({\bar{\kappa }}=q=const\ne 0\), from (23) we have

$$\begin{aligned} \frac{d\phi }{ds}=-q-\cos \phi \end{aligned}$$

Combining this with

$$\begin{aligned} \frac{dx}{ds}=y\cos \phi , \quad \frac{dy}{ds}=y\sin \phi , \end{aligned}$$

we get

$$\begin{aligned} \frac{dy}{d\phi } =\frac{dy}{ds}\frac{ds}{d\phi } =-\frac{y\sin \phi }{q+\cos \phi }. \end{aligned}$$

This is rewritten as

$$\begin{aligned} \frac{dy}{y} =-\frac{\sin \phi }{q+\cos \phi }\,d\phi . \end{aligned}$$

Integrating this equation, we get

$$\begin{aligned} \ln y=\int \frac{-\sin \phi }{q+\cos \phi }\,d\phi =\ln \vert q+\cos \phi \vert +C. \end{aligned}$$

Thus, we have

$$\begin{aligned} y=\pm r(q+\cos \phi ),\quad r>0. \end{aligned}$$

Next, the x-coordinate is computed as

$$\begin{aligned} x= & {} \int \frac{dx}{d\phi }\,d\phi = \int \frac{dx}{ds}\frac{ds}{d\phi }\,d\phi =\int \frac{y\cos \phi }{-q-\cos \phi }d\phi = \\= & {} \int \frac{r(-q-\cos \phi )\cos \phi }{-q-\cos \phi }d\phi =r\sin \phi +a. \end{aligned}$$

Henceforth, the Riemannian circle \({\bar{\gamma }}(s)=(x(s),y(s))\) is parameterized as:

$$\begin{aligned} x=a+r\sin \phi ,\quad y=\pm r(q+\cos \phi ). \end{aligned}$$

The image of this curve is a part of Euclidean circle

$$\begin{aligned} (x-a)^2+(y\pm rq)^{2}=r^2. \end{aligned}$$

Since \(y>0\), the whole image of this curve is contained in \(\mathbb {H}\) when and only when \(\vert q \vert >1\). In case \(\vert q \vert =1\), the curve is a horocycle, that is, a circle tangent to the ideal boundary without the tangent point.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erjavec, Z., Inoguchi, Ji. J-Trajectories in 4-Dimensional Solvable Lie Group \(\textrm{Sol}_1^4\). J Nonlinear Sci 33, 111 (2023). https://doi.org/10.1007/s00332-023-09968-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-023-09968-0

Keywords

Mathematics Subject Classification