Skip to main content
Log in

On a Mathematical Analysis of a Coupled System Adapted to MRI Image Denoising

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Image denoising is a vibrant, fast-growing and emerging branch of mathematics and computer science that has enormous applications in real-world problems. This paper proposes a new anisotropic diffusion model for image denoising, especially in magnetic resonance imaging (MRI), based on a nonlinear reaction–diffusion system. This model is driven by using the decomposition strategy of the \(H^{-1}\) norm, which is suitable for illustrating the small features in the textured image. Using the Schauder fixed point theorem, we have checked the well-posedness of the suggested reaction–diffusion system within a suitable framework. Finally, representative experiments and comparisons to other competitive models are performed to ensure the effectiveness of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Algorithm 1

Similar content being viewed by others

References

  • Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Prob. 10(6), 1217 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Afraites, L., Hadri, A., Laghrib, A.: A denoising model adapted for impulse and gaussian noises using a constrained-pde. Inverse Prob. 36(2), 025006 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Afraites, L., Hadri, A., Laghrib, A., Nachaoui, M.: A high order pde-constrained optimization for the image denoising problem. Inverse Probl. Sci. Eng. 29(12), 1821–1863 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Atlas, A., Bendahmane, M., Karami, F., Meskine, D., Oubbih, O.: A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discr. Contin. Dyn. Syst. B 26(9), 4963 (2021)

    MathSciNet  MATH  Google Scholar 

  • Aubin, J.: Un thorme de compacit. CR Acad. Sci. Paris 256(50425044), 3 (1963)

    Google Scholar 

  • Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), pp. 60–65. IEEE, (2005)

  • Catté, F., Lions, P.-L., Morel, J.-M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Chang, S.G., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9(9), 1532–1546 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • El Hakoume, A., Afraites, L., Laghrib, A.: An improved coupled pde system applied to the inverse image denoising problem. Electron. Res. Arch. 30(7), 2618–2642 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • El Hakoume, A., Afraites, L., Laghrib, A.: Well-posedness and simulation results of a coupled denoising pde. Nonlinear Anal. Real World Appl. 65, 103499 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • El Mourabit, I., El Rhabi, M., Hakim, A., Laghrib, A., Moreau, E.: A new denoising model for multi-frame super-resolution image reconstruction. Signal Process. 132, 51–65 (2017)

    Article  Google Scholar 

  • Evans, L.C.: Partial Differential Equations. American Mathematical Society (2022)

    Google Scholar 

  • Gimelfarb, G.L.: Image Textures and Gibbs Random Fields. Springer Science & Business Media (1999)

    Book  Google Scholar 

  • Guo, Z., Yin, J., Liu, Q.: On a reaction-diffusion system applied to image decomposition and restoration. Math. Comput. Model. 53(5–6), 1336–1350 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Hadri, A., Khalfi, H., Laghrib, A., Nachaoui, M.: An improved spatially controlled reaction-diffusion equation with a non-linear second order operator for image super-resolution. Nonlinear Anal. Real World Appl. 62, 103352 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Hadri, A., Laghrib, A., Oummi, H.: An optimal variable exponent model for magnetic resonance images denoising. Pattern Recogn. Lett. 151, 302–309 (2021)

    Article  Google Scholar 

  • Halim, A., Kumar, B.R.: A tv- l2- h- 1 pde model for effective denoising. Comput. Math. Appl. 80(10), 2176–2193 (2020)

    MathSciNet  MATH  Google Scholar 

  • Kim, S.: Pde-based image restoration: a hybrid model and color image denoising. IEEE Trans. Image Process. 15(5), 1163–1170 (2006)

    Article  Google Scholar 

  • Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003)

    Article  MATH  Google Scholar 

  • Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open access series of imaging studies (oasis): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19(9), 1498–1507 (2007)

    Article  Google Scholar 

  • Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations: the fifteenth Dean Jacqueline B. Lewis memorial lectures, volume 22. American Mathematical Soc., (2001)

  • Osher, S., Solé, A., Vese, L.: Image decomposition and restoration using total variation minimization and the h. Multiscale Model. Simul. 1(3), 349–370 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  • Rahman Chowdhury, M., Zhang, J., Qin, J., Lou, Y.: Poisson image denoising based on fractional-order total variation. Inverse Probl. Imaging, 14(1), (2020)

  • Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Schonlieb, C.-B.: Modern PDE Techniques for Image Inpainting. University of Cambridge (2009)

    Google Scholar 

  • Vese, L.A., Osher, S.J.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19(1), 553–572 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Weickert, J. et al.: Anisotropic Diffusion in Image Processing, volume 1. Teubner Stuttgart, (1998)

  • Zeidler, E.: Nonlinear Functional Analysis vol. 1: Fixed-Point Theorems. (1986)

  • Zeidler, E.: Nonlinear Functional Analysis and Its Applications: II/B: Nonlinear Monotone Operators. Springer Science & Business Media (2013)

    Google Scholar 

Download references

Acknowledgements

We are so grateful to the anonymous reviewers for their suggestions and corrections that improved a lot this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Laghrib.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Anthony Bloch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we provide some important lemmas, theorems and inequalities used in the proofs:

Theorem 2

(Hölder inequality) Let \(f\in L^{p}(\Omega )\) and \(g\in f\in L^{p'}(\Omega )\) where \(\displaystyle {\frac{1}{p}+\frac{1}{p'}}=1\), with \(1\le p \le \infty \). Then, \(f.g\in L^1(\Omega )\) and

$$\begin{aligned} \int _{\Omega } |fg|\le ||f||_{L^{p}(\Omega )}||g||_{L^{p'}(\Omega )}. \end{aligned}$$

Lemma 2

(Young inequality) Let pq be positive real numbers satisfying \(\displaystyle {\frac{1}{p}+\frac{1}{q}=1}\). Then, if a,b are nonnegative real numbers,

$$\begin{aligned} ab\le \frac{a^p}{p}+\frac{b^q}{q}. \end{aligned}$$

Theorem 3

(Second Schauder Fixed-Point Theorem (1927)) Suppose that

  1. (i)

    X is a reflexive, separable B-space;

  2. (ii)

    The map \(T: M \subseteq X \rightarrow M\) is weakly sequentially continuous, i.e., if \(x_n \rightharpoonup x\) as \(n \rightarrow \infty \), then also \(T\left( x_n\right) \rightharpoonup T(x)\);

  3. (iii)

    The set M is non-empty, closed, bounded and convex.

Then, T has a fixed point.

Theorem 4

Assume that the continuous functions \(u, \kappa :[0, T] \rightarrow [0, \infty )\) and \(K>0\) satisfy

$$\begin{aligned} u(t) \le K+\int _0^t \kappa (s) u(s) {\text {d}} s \end{aligned}$$

for all \(t \in [0, T]\). Then,

$$\begin{aligned} u(t) \le K \exp \left( \int _0^t \kappa (s) {\text {d}} s\right) . \end{aligned}$$

Theorem 5

(Aubin-Lions-Simon)(see Aubin (1963)) Let E, V and F be Banach spaces such that \(E \subset \) \(V \subset F\), we assume that \(E \hookrightarrow V\) is compact and \(V \hookrightarrow F\) is continuous. For \(1 \le p \le \infty \) and \(1 \le q \le \infty \), let

$$\begin{aligned} W=\left\{ u \in L^p(0, T, E): u^{\prime } \in L^q(0, T, F)\right\} . \end{aligned}$$
  1. (i)

    If \(p<\infty \), the embedding \(W \hookrightarrow L^p(0, T, V)\) is compact.

  2. (ii)

    If \(p=\infty \) and \(1<q\), then \(W \hookrightarrow {\mathcal {C}}(0, T, V)\) is compact.

Theorem 6

(see Zeidler (2013)) Let E be a Banach space and F be a Hilbert space such that \(E \subset F\); we assume that \(E\hookrightarrow F\) is a continuous and E dense in F. We identify F with its dual space \(F^{\prime }\) (so that \(E \subset F = F^{\prime } \subset E^{\prime }\)). Let \(u \in L^{2}(0,T;E)\), and suppose that \(\partial _t u \in L^{2}(0,T;E^{'})\). Then, \(u \in C(0, T; F)\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakoume, A.E., Zaabouli, Z., Afraites, L. et al. On a Mathematical Analysis of a Coupled System Adapted to MRI Image Denoising. J Nonlinear Sci 33, 113 (2023). https://doi.org/10.1007/s00332-023-09969-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-023-09969-z

Keywords

Mathematics Subject Classification