Skip to main content
Log in

On the Discretely Self-similar Solutions to the Euler Equations in \({\mathbb {R}}^3\)

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We remove \((\alpha , \lambda )\)-discretely self-similar blow up for solutions to the Euler equations for \(\alpha \ge \frac{3}{2}\), for which we allow sublinear growth for the profile. More precisely, we show that there are only spatial constant \((\alpha , \lambda )\)-discretely self-similar solutions \(v=c(t)\) having the sublinear growth at the infinity. For the proof, we establish a new a priori \(L^2_{\textrm{loc}} ({\mathbb {R}}^3)\) estimate for the 3D Euler equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Chae, D.: Nonexistence of self-similar singularities for the 3D incompressible Euler equations. Commun. Math. Phys. 273(1), 203–215 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Chae, D.: Euler’s equations and the maximum principle. Math. Ann. 361, 51–66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Chae, D., Shvydkoy, R.: On formation of a locally self-similar collapse in the incompressible Euler equations. Arch. Ration. Mech. Anal. 209(3), 999–1017 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Chae, D., Wolf, J.: Removing type II singularities off the axis for the three dimensional axisymmetric Euler equations. Arch. Ration. Mech. Anal. 234(3), 1041–1089 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Chae, D., Wolf, J.: Energy concentrations and type I blow-up for the 3D Euler equations. Commun. Math. Phys. 376(2), 1627–1669 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, J., Hou, T.-Y.: Finite time blowup of 2D Boussinesq and 3D Euler equations with \(C^{1, \alpha }\) velocity and boundary. Commun. Math. Phys. 383(3), 1559–1667 (2021)

    Article  MATH  Google Scholar 

  • Constantin, P.: On the Euler equations of incompressible fluids. Bull. Am. Math. Soc. 44(4), 603–621 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, P., Fefferman, C., Majda, A.: Geometric constraints on potential singularity formulation in the 3-D Euler equations. Commun. PDE 21(3–4), 559–571 (1996)

    MATH  Google Scholar 

  • Elgindi, T.-M.: Finite-time singularity formation for \(C^{1, \alpha }\) solutions to the incompressible Euler equations on \({\mathbb{R} }^3\). Ann. Math. (2) 194(3), 647–727 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Elgindi, T.-M., Ghoul, T.-E., Masmoudi, N.: On the stability of self-similar blow-up for \(C^{1, \alpha }\) solutions to the incompressible Euler equations on \({\mathbb{R} }^3\). Camb. J. Math. 9(4), 1035–1075 (2021)

    Article  MathSciNet  Google Scholar 

  • Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. AMS, Providence (1998)

    Google Scholar 

  • Galdi, G., Simader, C., Sohr, H.: On the Stokes problem in Lipschitz domain. Annali di Mat. Pura Appl. (IV) 167, 147–163 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Luo, G., Hou, T.-Y.: Formation of finite-time singularities in the 3D axisymmetric Euler equations: a numerics guided study. SIAM Rev. 61(4), 793–835 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge University Press, cambridge (2002)

    MATH  Google Scholar 

Download references

Acknowledgements

Chae was partially supported by NRF grant 2021R1A2C1003234, while Wolf has been supported by the NRF grant 2017R1E1A1A01074536.

Author information

Authors and Affiliations

Authors

Contributions

DC and JW wrote the main manuscript text together and reviewed the manuscript together.

Corresponding author

Correspondence to Dongho Chae.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. No data sets were generated or analyzed during the current study.

Additional information

Communicated by Paul Newton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Auxiliary lemmas

Appendix A: Auxiliary lemmas

Lemma A.1

Let \( v\in C^1({\mathbb {R}}^{3}) \) with \( \nabla \cdot v=0\) in \( {\mathbb {R}}^{3}\), such that \( \nabla \times v\in L^{ p}({\mathbb {R}}^{3})\), \( 1< p< \infty \). Then there exist \(u\in {\dot{W}}^{1,\,p}({\mathbb {R}}^{3} ) \), and a harmonic function \( \pi : {\mathbb {R}}^{3} \rightarrow {\mathbb {R}}\) such that

$$\begin{aligned} v = u + \nabla \pi \quad \text { in}\quad {\mathbb {R}}^{3}. \end{aligned}$$
(A.1)

Proof

Let us set

$$\begin{aligned} u_i= \sum _{j,k=1}^{3} \varepsilon _{ ijk} \Delta ^{ -1} (\partial _j ((\nabla \times v)_k)) = (\Delta ^{ -1}\nabla \times (\nabla \times v))_i, \quad i=1,2,3. \end{aligned}$$

where \( \Delta ^{ -1} \partial _j\) is well defined linear bounded operator from \( L^p({\mathbb {R}}^{3} )\) into the space \( X_p\), where

$$\begin{aligned} X_p={\left\{ \begin{array}{ll} L^{ \frac{3p}{3-p}}({\mathbb {R}}^{3} ) &{}\quad \text {if}\quad 1 \le p<3,\\ C^{ 1- \frac{3}{p}}({\mathbb {R}}^{3} ) &{}\quad \text {if}\quad 3< p <+\infty ,\\ BMO &{}\quad \text {if}\quad p =3, \end{array}\right. } \end{aligned}$$

which is a consequence of Sobolev’s embedding theorem together with Calderón-Zygmund inequality. In particular, we find \( \Vert \nabla u\Vert _{p} \le C \Vert \nabla \times v\Vert _{p} <+\infty ,\) which shows \(u\in {\dot{W}}^{1,p} ({\mathbb {R}}^3)\). We observe

$$\begin{aligned} \nabla \times (v-u)= \nabla \times v- \Delta ^{-1} \nabla \times \nabla \times (\nabla \times v) = \nabla \times v- \nabla \times v=0. \end{aligned}$$

Therefore, by the Poincare’s lemma \(v-u= \nabla \pi \) on \({\mathbb {R}}^3\) for some scalar function \(\pi \). Since \(\Delta \pi = \nabla \cdot v- \nabla \cdot u=0 \), the claim is proved. \(\square \)

Lemma A.2

(Iteration lemma) Let \( \beta _m: [a, b] \rightarrow {\mathbb {R}}\), \( m\in {\mathbb {N}}\cup \{ 0\}\) be a sequences of continuous functions. Furthermore let \( \alpha \in L^1(a, b)\) with \(\alpha \ge 0\). We assume that the following recursive integral inequality holds true for a constant \( C>0\)

$$\begin{aligned} \beta _{ m}(t) \le C+ \int \limits _{a}^{t} \alpha (s) \beta _{ m+1}(s) \textrm{d}s, \quad m\in {\mathbb {N}}\cup \{ 0\}. \end{aligned}$$
(A.2)

Furthermore, suppose that there exists \( K>0\) such that

$$\begin{aligned} \max _{ t\in [a, b]}| \beta _m(t)| \le K^m\quad \forall \,m\in {\mathbb {N}}. \end{aligned}$$
(A.3)

Then, the following inequality holds true for all \( t\in [a,b]\)

$$\begin{aligned} \beta _0(t) \le { C } { } e^{\int \limits _{a}^{t} \alpha (\tau ) d\tau }. \end{aligned}$$
(A.4)

Proof

Iterating (A.2) m-times \((m \in {\mathbb {N}}, m \ge 3)\), and arguing similar as in the proof of (Chae and Wolf 2019, Lemma B.1), we find

$$\begin{aligned} \beta _{0}&\le C \Bigg \{1+ \int \limits _{t_{0}}^{t} \alpha (s)\textrm{d}s + \sum _{k= 2}^{m-1}\int \limits _{t_{0}}^{t} \int \limits _{t_{0}}^{s_{1}} \ldots \int \limits _{t_{0}}^{s_{k-1}} \alpha (s_{1}) \ldots \alpha (s_{k}) \textrm{d}s_{k} \ldots \textrm{d}s_{1} \Bigg \}\\&\qquad \qquad + \int \limits _{t_{0}}^{t} \int \limits _{t_{0}}^{s_{1}} \ldots \int \limits _{t_{0}}^{s_{m-1}} \beta _{m} (s_{m})\alpha (s_{1}) \ldots \alpha (s_{m}) \textrm{d}s_{m} \ldots d s_{1}\\&\le C e ^{ \int \limits _{t_{0}}^{t} \alpha (s) \textrm{d}s} + \frac{K^{m}}{ m!} \bigg (\int \limits _{t_{0}}^{t} \alpha (s) \textrm{d}s\bigg )^{m}. \end{aligned}$$

Since the last term on the right-hand side tends to zero as \(m \rightarrow + \infty \) we get (A.4)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, D., Wolf, J. On the Discretely Self-similar Solutions to the Euler Equations in \({\mathbb {R}}^3\). J Nonlinear Sci 33, 115 (2023). https://doi.org/10.1007/s00332-023-09975-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-023-09975-1

Keywords

Mathematics Subject Classification