Skip to main content
Log in

Asymptotic Behavior of a Stochastic Generalized Nutrient–Phytoplankton–Zooplankton Model

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we consider the stochastic nutrient–phytoplankton–zooplankton model with nutrient cycle. In order to take stochastic fluctuations into account, we add the stochastic increments to the variations of biomass of nutrition, phytoplankton and zooplankton during time interval \(\Delta t\), thus we obtain the corresponding stochastic model. Subsequently, we explore the existence, uniqueness and stochastically ultimate boundness of global positive solution. By constructing suitable Lyapunov function, we also obtain V-geometric ergodicity of this model. In addition, the sufficient conditions of exponential extinction and persistence in the mean of plankton are established. At last, we present some numerical simulations to validate theoretical results and analyze the impacts of some important parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Arnold, L.: Stochastic differential equations: Theory and application (1972)

  • Arnold, E.M.: Aspects of a zooplankton, phytoplankton, phosphorus system. Ecol. Model. 5(4), 293–300 (1978)

    Article  Google Scholar 

  • Athreya, A., Kolba, T., Mattingly, J.: Propagating Lyapunov functions to prove noise-induced stabilization. Electron. J. Probab. 17, 1–38 (2012)

    Article  MathSciNet  Google Scholar 

  • Bellet, L.R.: Ergodic properties of Markov processes. In: The Markovian Approach, Open Quantum Systems II, Springer (2006)

  • Cai, Y., Kang, Y., Wang, W.: A stochastic SIRS epidemic model with nonlinear incidence rate. Appl. Math. Comput. 305, 221–240 (2017)

    MathSciNet  Google Scholar 

  • Durrett, R.: Stochastic Calculus: A Practical Introduction, vol. 6. CRC Press (1996)

  • Hallam, T.G.: Structural sensitivity of grazing formulations in nutrient controlled plankton models. J. Math. Biol. 5(3), 269–280 (1978)

    Article  MathSciNet  Google Scholar 

  • Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43(3), 525–546 (2001)

    Article  MathSciNet  Google Scholar 

  • Ikeda, N., Watanabe, S.: A comparison theorem for solutions of stochastic differential equations and its applications. Osaka J. Math. 14, 619–633 (1977)

    MathSciNet  Google Scholar 

  • Imhof, L., Walcher, S.: Exclusion and persistence in deterministic and stochastic chemostat models. J. Differ. Equ. 217(1), 26–53 (2005)

    Article  MathSciNet  Google Scholar 

  • Jang, S.R.-J., Allen, E.J.: Deterministic and stochastic nutrient-phytoplankton-zooplankton models with periodic toxin producing phytoplankton. Appl. Math. Comput. 271, 52–67 (2015)

    MathSciNet  Google Scholar 

  • Ji, C., Jiang, D.: Threshold behaviour of a stochastic SIR model. Appl. Math. Model. 38(21–22), 5067–5079 (2014)

    Article  MathSciNet  Google Scholar 

  • Mandal, P.S., Banerjee, M.: Deterministic and stochastic dynamics of a competitive phytoplankton model with allelopathy. Differ. Equ. Dyn. Syst. 21, 341–372 (2013)

    Article  MathSciNet  Google Scholar 

  • Mao, X.: Stochastic Differential Equations and Applications. Elsevier (2007)

  • Mattingly, J.C., Stuart, A.M., Higham, D.J.: Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stoch. Proc. Appl. 101(2), 185–232 (2002)

    Article  MathSciNet  Google Scholar 

  • Riley, G.A., Stommel, H., Burrpus, D.P.: Qualitative ecology of the plankton of the western north atlantic. Bull. Bingham Oceanogr. Collect. 12, 1–169 (1949)

    Google Scholar 

  • Ruan, S.: Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling. J. Math. Biol. 31, 633–654 (1993)

    Article  MathSciNet  Google Scholar 

  • Rudnicki, R., Pichór, K., Tyran-Kamińska, M.: Markov semigroups and their applications. In: Dynamics of Dissipation, pp. 215–238. Springer (2002)

  • Smith, H.L., Waltman, P.: The Theory of the Chemostat: Dynamics of Microbial Competition, vol. 13. Cambridge University Press (1995)

  • Sun, S., Zhang, X.: Asymptotic behavior of a stochastic delayed chemostat model with nutrient storage. J. Biol. Syst. 26(02), 225–246 (2018)

    Article  MathSciNet  Google Scholar 

  • Wang, L., Jiang, D.: Ergodic property of the chemostat: a stochastic model under regime switching and with general response function. Nonlinear Anal.-Hybri. 27, 341–352 (2018)

    Article  MathSciNet  Google Scholar 

  • Wroblewski, J.S., Sarmiento, J.L., Flierl, G.R.: An ocean basin scale model of plankton dynamics in the north atlantic: 1. solutions for the climatological oceanographic conditions in may. Glob. Biogeochem. Cy. 2(3), 199–218 (1988)

    Article  Google Scholar 

  • Xu, C., Yuan, S.: Competition in the chemostat: a stochastic multi-species model and its asymptotic behavior. Math. Biosci. 280, 1–9 (2016)

    Article  MathSciNet  Google Scholar 

  • Yu, X., Yuan, S., Zhang, T.: Asymptotic properties of stochastic nutrient-plankton food chain models with nutrient recycling. Nonlinear Anal-Hybri. 34, 209–225 (2019)

    Article  MathSciNet  Google Scholar 

  • Zhang, X.: A stochastic non-autonomous chemostat model with mean-reverting Ornstein-Uhlenbeck process on the washout rate. J. Dyn. Differ. Equ. (2020). https://doi.org/10.1016/j.amc.2020.125833

    Article  Google Scholar 

  • Zhang, X., Yuan, R.: A stochastic chemostat model with mean-reverting Ornstein-Uhlenbeck process and Monod-Haldane response function. Appl. Math. Comput. 394, 125833 (2021)

    MathSciNet  Google Scholar 

  • Zhao, Q., Liu, S., Niu, X.: Stationary distribution and extinction of a stochastic nutrient-phytoplankton-zooplankton model with cell size. Math. Method. Appl. Sci. 43(7), 3886–3902 (2020)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 12171039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Zhang.

Additional information

Communicated by Kevin Painter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Zhang, X. & Yuan, R. Asymptotic Behavior of a Stochastic Generalized Nutrient–Phytoplankton–Zooplankton Model. J Nonlinear Sci 34, 94 (2024). https://doi.org/10.1007/s00332-024-10070-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-024-10070-2

Keywords

Mathematics Subject Classification