Skip to main content
Log in

Integrable Variants of the Toda Lattice

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

By introducing bilinear operators of trigonometric type, we propose several novel integrable variants of the famous Toda lattice, two of which can be regarded as integrable discretizations of the Kadomtsev–Petviashvili equation—a universal model describing weakly nonlinear waves in media with dispersion of velocity. We also demonstrate that two one-dimensional reductions of these variants can approximate the nonlinear Schrödinger equation and a generalized nonlinear Schrödinger equation well. It turns out that these equations admit meaningful solutions including solitons, breathers, lumps and rogue waves, which are expressed in terms of explicit and closed forms. In particular, it seems to be the first time that rogue wave solutions have been obtained for Toda-type equations. Furthermore, g-periodic wave solutions are also produced in terms of Riemann theta function. An approximation solution of the three-periodic wave is successfully carried out by using a deep neural network. The introduction of trigonometric-type bilinear operators is also efficient in generating new variants together with rich properties for some other integrable equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ablowitz, M.J.: Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  • Ablowitz, M.J., Clarkson, P.: Nonlinear Evolution Equation and Inverse Scattering Solitons. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  • Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Google Scholar 

  • Ablowitz, M.J., Satsuma, J.: Solitons and rational solutions of nonlinear evolution equations. J. Math. Phys. 19(10), 2180–2186 (1978)

    MathSciNet  Google Scholar 

  • Ablowitz, M.J., Segur, H.: Solitons and The Inverse Scattering Transform. SIAM, London (1981)

    Google Scholar 

  • Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  • Adler, M., Van Moerbeke, P.: Matrix integrals, Toda symmetries, Virasoro constraints and orthogonal polynomials. Duke Math. J. 80, 863–911 (1995)

    MathSciNet  Google Scholar 

  • Akhmediev, N.N., Ankiewicz, A.: Solitons: Nonlinear Pulses and Beams. Chapman & Hall, London (1997)

    Google Scholar 

  • Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373(6), 675–678 (2009)

    Google Scholar 

  • Baronio, F., Wabnitz, S., Kodama, Y.: Optical Kerr spatiotemporal dark-lump dynamics of hydrodynamic origin. Phys. Rev. Lett. 116(17), 173901 (2016)

    Google Scholar 

  • Beals, R., Sattinger, D.H., Szmigielski, J.: Peakons, strings, and the finite Toda lattice. Commun. Pure Appl. Math. 54(1), 91–106 (2001)

    MathSciNet  Google Scholar 

  • Binder, P., Abraimov, D., Ustinov, A.V., Flach, S., Zolotaryuk, Y.: Observation of breathers in Josephson ladders. Phys. Rev. Lett. 84, 745–748 (2000)

    Google Scholar 

  • Biondini, G.: Line soliton interactions of the Kadomtsev-Petviashvili equation. Phys. Rev. Lett. 99(6), 064103 (2007)

    Google Scholar 

  • Biondini, G., Wang, D.: On the soliton solutions of the two-dimensional Toda lattice. J. Phys. A Math. Theor. 43(43), 434007 (2010)

    MathSciNet  Google Scholar 

  • Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    MathSciNet  Google Scholar 

  • Case, K.M.: The \(N\)-soliton solution of the Benjamin-Ono equation. Proc. Nat. Acad. Sci. U.S.A. 75(8), 3562–3563 (1978)

    MathSciNet  Google Scholar 

  • Chen, J., Pelinovsky, D.E.: Periodic travelling waves of the modified KdV equation and rogue waves on the periodic background. J. Nonlinear Sci. 29(6), 2797–2843 (2019)

    MathSciNet  Google Scholar 

  • Faddeev, L., Van Moerbeke, P., Lambert, F. (eds.): Bilinear Integrable Systems: From Classical to Quantum, Continuous to Discrete. NATO Science Series II: Mathematics, vol. 201. Physics and Chemistry. Springer, Dordrecht (2006)

  • Feng, B.-F., Ling, L., Takahashi, D.A.: Multi-breather and high-order rogue waves for the nonlinear Schrödinger equation on the elliptic function background. Stud. Appl. Math. 144(1), 46–101 (2020)

    MathSciNet  Google Scholar 

  • Flach, S., Gorbach, A.V.: Discrete breathers-advances in theory and applications. Phys. Rep. 467(1–3), 1–116 (2008)

    Google Scholar 

  • Flach, S., Willis, C.R.: Discrete breathers. Phys. Rep. 295(5), 181–264 (1998)

    MathSciNet  Google Scholar 

  • Gegenhasi, X. B. Hu, S. H. Li, and B. Wang. Nonsingular rational solutions to integrable models. In Asymptotic, Algebraic and Geometric Aspects of Integrable Systems, pages 79–99. Springer, 2020

  • Grammaticos, B., Ramani, A., Papageorgiou, V., Satsuma, J., Willox, R.: Constructing lump-like solutions of the Hirota-Miwa equation. J. Phys. A Math. Theor. 40(42), 12619 (2007)

    MathSciNet  Google Scholar 

  • Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, 2004. Translated by Nagai, A., Nimmo, J. and Gilson, C

  • Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Google Scholar 

  • Hirota, R.: Exact \(N\)-soliton solution of a nonlinear lumped network equation. J. Phys. Soc. Japan 35(1), 286–288 (1973)

    MathSciNet  Google Scholar 

  • Hirota, R., Ito, M.: A direct approach to multi-periodic wave solutions to nonlinear evolution equations. J. Phys. Soc. Japan 50(1), 338–342 (1981)

    MathSciNet  Google Scholar 

  • Hirota, R., Satsuma, J.: A variety of nonlinear network equations generated from the Bäcklund transformation for the Toda lattice. Prog. Theor. Phys. Supp. 59, 64–100 (1976)

    Google Scholar 

  • Horikis, T.P., Frantzeskakis, D.J.: Light meets water in nonlocal media: surface tension analogue in optics. Phys. Rev. Lett. 118(24), 243903 (2017)

    Google Scholar 

  • Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Google Scholar 

  • Hu, X.B.: Nonlinear superposition formulae for the differential-difference analogue of the KdV equation and two-dimensional Toda equation. J. Phys. A Math. Theor. 27(1), 201–214 (1994)

    MathSciNet  Google Scholar 

  • Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons and Chaos, 2nd edn. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  • Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15, 539–541 (1970)

    Google Scholar 

  • Kivshar, Y.S., Malomed, B.A.: Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61(4), 763 (1989)

    Google Scholar 

  • Kodama, Y.: Solitons in Two-Dimensional Shallow Water. SIAM, London (2018)

    Google Scholar 

  • Kostant, B.: The solution to a generalized Toda lattice and representation theory. Adv. Math. 34(3), 195–338 (1979)

    MathSciNet  Google Scholar 

  • Lamb, G.L., Jr.: Elements of Soliton Theory. Wiley, London (1980)

    Google Scholar 

  • Lonngren, K.E.: Ion acoustic soliton experiments in a plasma. Opt. Quant. Electron. 30(7), 615–630 (1998)

    Google Scholar 

  • Manakov, S.V., Zakharov, V.E., Bordag, L.A., Its, A.R., Matveev, V.B.: Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction. Phys. Lett. A 63(3), 205–206 (1977)

    Google Scholar 

  • Martinec, E.J.: On the origin of integrability in matrix models. Commun. Math. Phys. 138(3), 437–449 (1991)

    MathSciNet  Google Scholar 

  • Nakamura, A.: A direct method of calculating periodic wave solutions to nonlinear evolution equations. I. exact two-periodic wave solution. J. Phys. Soc. Japan 47(5), 1701–1705 (1979)

    MathSciNet  Google Scholar 

  • Nakamura, A.: Exact Bessel type solution of the two-dimensional Toda lattice equation. J. Phys. Soc. Japan 52(2), 380–387 (1983)

    MathSciNet  Google Scholar 

  • Nakamura, A.: Exact cylindrical soliton solutions of the sine-Gordon equation, the sinh-Gordon equation and the periodic Toda equation. J. Phys. Soc. Japan 57(10), 3309–3322 (1988)

    MathSciNet  Google Scholar 

  • Narita, K.: Rational and \(N\)-breather solutions for the 2D Toda lattice equation. J. Math. Anal. Appl. 281(2), 757–760 (2003)

    MathSciNet  Google Scholar 

  • Newell, A.C.: Solitons in Mathematics and Physics. SIAM, London (1985)

    Google Scholar 

  • Ohkuma, K., Wadati, M.: The Kadomtsev-Petviashvili equation: the trace method and the soliton resonances. J. Phys. Soc. Japan 52(3), 749–760 (1983)

    MathSciNet  Google Scholar 

  • Pelinovsky, D.E., Stepanyants, Y.A., Kivshar, Y.S.: Self-focusing of plane dark solitons in nonlinear defocusing media. Phys. Rev. E 51(5), 5016 (1995)

    MathSciNet  Google Scholar 

  • Petviashvili, V.I.: Equation of an extraordinary soliton. Plasma Phys. 2, 469–472 (1976)

    Google Scholar 

  • Rao, J., Fokas, A.S., He, J.: Doubly localized two-dimensional rogue waves in the Davey-Stewartson I equation. J. Nonlinear Sci. 31(4), 67 (2021)

    MathSciNet  Google Scholar 

  • Ruijsenaars, S.N.M.: Relativistic Toda systems. Commun. Math. Phys. 133(2), 217–247 (1990)

    MathSciNet  Google Scholar 

  • Saito, S.: String theories and Hirota’s bilinear difference equation. Phys. Rev. Lett. 59(16), 1798 (1987)

    MathSciNet  Google Scholar 

  • Saitoh, N.: A transformation connecting the Toda lattice and the K-dV equation. J. Phys. Soc. Japan 49(1), 409–416 (1980)

    MathSciNet  Google Scholar 

  • Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20(7), 1496–1503 (1979)

    MathSciNet  Google Scholar 

  • Schwarz, U.T., English, L.Q., Sievers, A.J.: Experimental generation and observation of intrinsic localized spin wave modes in an antiferromagnet. Phys. Rev. Lett. 83, 223–226 (1999)

    Google Scholar 

  • Sievers, A.J., Takeno, S.: Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. 61, 970–973 (1988)

    Google Scholar 

  • Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450(7172), 1054–1057 (2007)

    Google Scholar 

  • Squire, W., Trapp, G.: Using complex variables to estimate derivatives of real functions. SIAM Rev. 40(1), 110–112 (1998)

    MathSciNet  Google Scholar 

  • Stenflo, L.: A solution of the generalised non-linear Schrödinger equation. J. Phys. A Math. Gen. 21(9), L499 (1988)

    MathSciNet  Google Scholar 

  • Sukhorukov, A.A., Kivshar, Y.S., Eisenberg, H.S., Silberberg, Y.: Spatial optical solitons in waveguide arrays. IEEE J. Quantum Electron. 39(1), 31–50 (2003)

    Google Scholar 

  • Takasaki, K.: Toda lattice hierarchy and generalized string equations. Commun. Math. Phys. 181(1), 131–156 (1996)

    MathSciNet  Google Scholar 

  • M. Toda. Selected Papers of Morikazu Toda. World Scientific, 1993. ed. by M. Wadati

  • Toda, M.: Vibration of a chain with nonlinear interaction. J. Phys. Soc. Japan 22(2), 431–436 (1967)

    Google Scholar 

  • Toda, M.: Nonlinear Waves and Solitons. Springer, Berlin (1989)

    Google Scholar 

  • Toda, M.: Theory of Nonlinear Lattices, 2nd edn. Springer, Berlin (1989)

    Google Scholar 

  • Trías, E., Mazo, J.J., Orlando, T.P.: Discrete breathers in nonlinear lattices: Experimental detection in a Josephson array. Phys. Rev. Lett. 84, 741–744 (2000)

    Google Scholar 

  • K. Ueno and K. Takasaki. Toda lattice hierarchy. In Advanced Studies in Pure Mathematics, vol. 9, pp. 1–95. North-Holland, Amsterdam, 1984

  • Villarroel, J.: On the solution to the inverse problem for the Toda chain. SIAM J. Appl. Math. 59(1), 261–285 (1998)

    MathSciNet  Google Scholar 

  • Villarroel, J., Ablowitz, M.J.: On the discrete spectrum of the nonstationary Schrödinger equation and multipole lumps of the Kadomtsev-Petviashvili I equation. Commun. Math. Phys. 207(1), 1–42 (1999)

    Google Scholar 

  • Yang, J.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, London (2010)

    Google Scholar 

  • Yang, B., Yang, J.: Pattern transformation in higher-order lumps of the Kadomtsev-Petviashvili I equation. J. Nonlinear Sci. 32(4), 52 (2022)

    MathSciNet  Google Scholar 

  • Yang, B., Chen, J., Yang, J.: Rogue waves in the generalized derivative nonlinear Schrödinger equations. J. Nonlinear Sci. 30(6), 3027–3056 (2020)

    MathSciNet  Google Scholar 

  • Zhang, Y.N., Hu, X.B., Sun, J.Q.: A numerical study of the 3-periodic wave solutions to KdV-type equations. J. Comput. Phys. 355, 566–581 (2018)

    MathSciNet  Google Scholar 

  • Zhang, Y.N., Hu, X.B., He, Y., Sun, J.Q.: A numerical study of the 3-periodic wave solutions to Toda-type equations. Commun. Comput. Phys. 26(2), 579–598 (2019)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere appreciation to the referees and editors for their careful reading and valuable suggestions, which greatly improved the clarity and rigor of this paper. X.K. Chang was supported in part by the National Natural Science Foundation of China (Grant Nos. 12222119, 12171461 and 12288201) and the Youth Innovation Promotion Association CAS. X.B. Hu was supported in part by the National Natural Science Foundation of China (Grant Nos. 11931017 and 12071447). Y.N. Zhang was supported in part by the National Natural Science Foundation of China (Grant No. 12071447) and Natural Science Foundation of Jiangsu Province (No. BK20211226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Jie Liu.

Additional information

Communicated by Luis Garcia-Naranjo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Appendix 2: From Bilinear Equations to Nonlinear Equations

According to the definition of bilinear operators, the bilinear equation (1.4) can be expressed as

$$\begin{aligned} \bigl ( \frac{\partial ^2}{\partial x^2} f_n \bigr ) f_n - \bigl ( \frac{\partial }{\partial x} f_n \bigr )^2 - \bigl ( \frac{\partial ^2}{\partial t^2} f_n \bigr ) f_n + \bigl ( \frac{\partial }{\partial t} f_n \bigr )^2 - 2\sin ^2\bigl (\frac{1}{2} D_n\bigr ) f_n \cdot f_n = 0, \end{aligned}$$

which leads to

$$\begin{aligned} v_n = \frac{2\sin ^2\bigl (\frac{1}{2} D_n\bigr ) f_n \cdot f_n}{f_n^2} = \frac{(1-\cos {(D_n)})f_n \cdot f_n}{f_n^2}. \end{aligned}$$

Then we have

$$\begin{aligned} \ln {(1-v_n)} = \ln {\frac{\cos {(D_n)} f_n \cdot f_n}{f_n^2}} = \ln {(\cos {(D_n)} f_n \cdot f_n)} - 2 \ln {f_n}. \end{aligned}$$

It follows from the formula (1.188) in (Hirota 2004), \(2 \cosh {\bigl (\delta \frac{\partial }{\partial z} \bigr )} \ln {f(z)} = \ln {(\cosh {(\delta D_z)} f(z) \cdot f(z))}\), that

$$\begin{aligned} \ln {(\cos {(\delta D_n)} f_n \cdot f_n)} = 2 \cos {\bigl (\delta \frac{\partial }{\partial n} \bigr )} \ln {f_n}. \end{aligned}$$

In fact, by expanding these two equations with respect to \(\delta \) and comparing the terms in powers of \(\delta \), it can be observed that they are completely identical. It turns out that

$$\begin{aligned} \ln {(1-v_n)} = \bigl ( 2 \cos {\bigl (\frac{\partial }{\partial n} \bigr )} - 2 \bigr ) \ln {f_n} = -4 \sin ^2\bigl (\frac{1}{2} \frac{\partial }{\partial n} \bigr ) \ln {f_n}, \end{aligned}$$

which then yields

$$\begin{aligned} \bigl ( \frac{\partial ^2}{\partial x^2} - \frac{\partial ^2}{\partial t^2} \bigr ) \ln {(1-v_n)} = -4 \bigl ( \frac{\partial ^2}{\partial x^2} - \frac{\partial ^2}{\partial t^2} \bigr ) \sin ^2\bigl (\frac{1}{2} \frac{\partial }{\partial n} \bigr ) \ln {f_n} = -4 \sin ^2\bigl (\frac{1}{2} \frac{\partial }{\partial n} \bigr ) v_n. \end{aligned}$$

Therefore, we derive the nonlinear equation (1.9) from the bilinear equation (1.4), and the other two nonlinear equations (1.10) and (1.11) can be obtained similarly.

Appendix 3: Proof of the Theorem 2.1

For computational simplicity, we express the Grammian determinant solution (2.1) by means of a Pfaffian

$$\begin{aligned} f_n&= (1,2,\ldots ,N,N',\ldots ,2',1')_n,\\ (j,k')_n&= \delta _{jk} + \frac{1}{p_j + q_j + p_k^*+ q_k^*} e^{\eta _j + \eta _k^*},\\ (j,k)_n&= (j',k')_n=0. \end{aligned}$$

Introduce the linear differential operators \(L_\pm \) defined by

$$\begin{aligned} L_\pm =\frac{\partial }{\partial x} \pm \frac{\partial }{\partial t}, \end{aligned}$$
(B.1)

from which, the bilinear equation (1.4) can be written as

$$\begin{aligned} (L_+L_-f_n)f_n - (L_+f_n)(L_-f_n) + f_{n+\textrm{i}}f_{n-\textrm{i}} - f_n^2=0. \end{aligned}$$
(B.2)

The derivatives with respect to x and t and shifts in n of the Pfaffian entry \((j,k')_n\) are as follows

$$\begin{aligned} L_+ (j,k')_n&= e^{\eta _j + \eta _k^*} = (d_n,d_n',j,k')_n, \\ L_- (j,k')_n&= e^{\eta _j + \eta _k^*+ \textrm{i}r_j - \textrm{i}r_k^*} = (d_{n-\textrm{i}},d_{n+\textrm{i}}',j,k')_n, \\ L_+L_- (j,k')_n&=( -\textrm{i}e^{\textrm{i}r_j} + \textrm{i}e^{-\textrm{i}r_k^*} ) e^{\eta _j + \eta _k^*} = -\textrm{i}(d_n,d_{n+\textrm{i}}',j,k')_n + \textrm{i}(d_{n-\textrm{i}},d_{n}',j,k')_n, \\ (j,k')_{n+\textrm{i}}&= \delta _{jk} + \frac{1}{p_j + q_j + p_k^*+ q_k^*} e^{\eta _j + \eta _k^*} + \textrm{i}e^{\eta _j + \eta _k^*+\textrm{i}r_j} \\&= (j,k')_n + \textrm{i}(d_n,d_{n+\textrm{i}}',j,k')_n, \\ (j,k')_{n-\textrm{i}}&= \delta _{jk} + \frac{1}{p_j + q_j + p_k^*+ q_k^*} e^{\eta _j + \eta _k^*} - \textrm{i}e^{\eta _j + \eta _k^*-\textrm{i}r_k^*} \\&= (j,k')_n - \textrm{i}(d_{n-\textrm{i}},d_{n}',j,k')_n, \end{aligned}$$

where

$$\begin{aligned} (d_m',j)_n= & e^{p_j x + q_j t +r_j m + \eta _j^0}, \quad (d_m,k')_n=e^{p_k^* x + q_k^* t +r_k^* m + (\eta _k^0)^*}, \\ (d_l,d_m)_n= & (d_l',d_m')_n=(d_l,d_m')_n=0, \quad l,m \in \{ z + \epsilon \textrm{i} | z \in \mathbb {Z}, \, \epsilon = 0, \pm 1 \}. \end{aligned}$$

It should be noted that \(d_{n-\textrm{i}}\) and \(d_{n+\textrm{i}}'\) are merely two notations defined for the sake of convenience in expression, and they can be replaced with other notations that do not involve the imaginary unit “i". Therefore, rewriting \(f_n=(\bullet )_n\), we obtain

$$\begin{aligned} L_+ f_n&= (d_n,d_n',\bullet )_n, \\ L_- f_n&= (d_{n-\textrm{i}},d_{n+\textrm{i}}',\bullet )_n, \\ L_+L_- f_n&= -\textrm{i}(d_n,d_{n+\textrm{i}}',\bullet )_n + \textrm{i}(d_{n-\textrm{i}},d_{n}',\bullet )_n+(d_n,d_n',d_{n-\textrm{i}},d_{n+\textrm{i}}',\bullet )_n, \\ f_{n+\textrm{i}}&=(\bullet )_n + \textrm{i}(d_n,d_{n+\textrm{i}}',\bullet )_n, \\ f_{n-\textrm{i}}&=(\bullet )_n - \textrm{i}(d_{n-\textrm{i}},d_{n}',\bullet )_n. \end{aligned}$$

By employing the above equations, (B.2) is expressed as

$$\begin{aligned}&(d_n,d_n',d_{n-\textrm{i}},d_{n+\textrm{i}}',\bullet )_n (\bullet )_n - (d_n,d_n',\bullet )_n (d_{n-\textrm{i}},d_{n+\textrm{i}}',\bullet )_n \\&+ (d_n,d_{n+\textrm{i}}',\bullet )_n(d_{n-\textrm{i}},d_{n}',\bullet )_n = 0, \end{aligned}$$

which is nothing but the Pfaffian identity, thus the conclusion follows. We remark that based on the relationship between Pfaffians and determinants, each term in this Pfaffian identity can be expressed by a (bordered) determinant, and thus this Pfaffian identity essentially corresponds to the Jacobi identity for determinants (Hirota 2004).

Appendix 4: From the Variant 1DTL to the (generalized) NLS Equation

Let us derive the NLS equation and a generalized NLS equation from the equation (2.9). Hereafter, we write \(q_n(t)\) as \(q_n\) for simplicity. Firstly, rewrite Eq. (2.9) as

$$\begin{aligned} \left[ \left( \frac{\textrm{d}^2}{\textrm{d}t^2} q_n \right) q_n - \left( \frac{\textrm{d}}{\textrm{d}t} q_n\right) ^2 \right] q_{n-\textrm{i}} = q_{n+\textrm{i}} q_{n} q_{n-\textrm{i}} - q_{n}^3. \end{aligned}$$
(C.1)

It is noted that \(q_n=\frac{f_{n+\textrm{i}}}{f_n}\) and \(f_n\) is a real-valued function of the real variables t and n, which gives \(q_n^*=\frac{1}{q_{n-\textrm{i}}}\). Multiplying both sides of Eq. (C.1) by \(\frac{1}{q_{n-\textrm{i}}}\) yields

$$\begin{aligned} \left( \frac{\textrm{d}^2}{\textrm{d}t^2} q_n \right) q_n - \left( \frac{\textrm{d}}{\textrm{d}t} q_n\right) ^2 = q_{n+\textrm{i}} q_{n} - q_{n}^3 q_n^*. \end{aligned}$$
(C.2)

Introduce a positive parameter \(h \, (0<h\le 1)\) and consider the variable transformations

$$\begin{aligned} t=\frac{\tau }{h}, \quad n=\frac{\xi }{h^2}, \quad q_n=h \, q(\tau ,\xi ). \end{aligned}$$
(C.3)

Then (C.2) is transformed into

$$\begin{aligned} h^4 q_{\tau \tau }q - h^4 q_\tau ^2 = h^2 (q + \textrm{i} h^2 q_\xi + \mathcal {O}(h^4) )q - h^4q^3q^*, \end{aligned}$$

which is equivalent to

$$\begin{aligned} \textrm{i} h^2 q_\xi - h^2 q_{\tau \tau } - h^2q|q|^2 + q + h^2 \frac{q_\tau ^2}{q} + \mathcal {O}(h^4) = 0. \end{aligned}$$

Leaving the \(\mathcal {O}(h^2)\) terms as higher-order ones, this leads to

$$\begin{aligned} \textrm{i} h^2 q_\xi - h^2 q_{\tau \tau } - h^2q|q|^2 + q + h^2 \frac{q_\tau ^2}{q} = 0 \end{aligned}$$

or, with a suitable rescaling of the dependent and independent variables (\(\xi \rightarrow h^2\xi , \tau \rightarrow h\tau , q \rightarrow h^{-1}q\)),

$$\begin{aligned} \textrm{i} q_\xi - q_{\tau \tau } - q|q|^2 + q + \frac{q_\tau ^2}{q} = 0 \end{aligned}$$

which is a generalized NLS equation that describes wave propagation in fluids and plasmas with sharp boundaries and dissipation (see Stenflo 1988) and Kivshar and Malomed 1989, page 769).

Using the relationship between \(q_n\) and \(f_n\) again, we obtain \(q_n^{-1}=(q_{n-\textrm{i}})^*\). Multiplying both sides of Eq. (C.2) by \(q_n^{-1}\) gives

$$\begin{aligned} \frac{\textrm{d}^2}{\textrm{d}t^2} q_n - \left( \frac{\textrm{d}}{\textrm{d}t} q_n\right) ^2 \left( q_{n-\textrm{i}}\right) ^*= q_{n+\textrm{i}} - q_{n}^2 q_n^*. \end{aligned}$$

Then considering the variable transformations given by (C.3) yields

$$\begin{aligned} \textrm{i} h^2 q_\xi - h^2 q_{\tau \tau } - h^2q|q|^2 + q + \mathcal {O}(h^4) = 0. \end{aligned}$$

Retain terms up to \(\mathcal {O}(h^2)\), and then we have

$$\begin{aligned} \textrm{i} h^2 q_\xi - h^2 q_{\tau \tau } - h^2q|q|^2 + q = 0. \end{aligned}$$
(C.4)

Furthermore, applying the transformations

$$\begin{aligned} \xi \rightarrow - h^2\xi , \quad \tau \rightarrow h\tau , \quad q \rightarrow \sqrt{2} h^{-1}q e^{-\textrm{i}\xi }, \end{aligned}$$

then the above Eq. (C.4) reduces to

$$\begin{aligned} \textrm{i} q_\xi + q_{\tau \tau } + 2|q|^2q=0, \end{aligned}$$

which is nothing but the focusing NLS equation in standard dimensionless form.

Finally, let us give a remark. Recall that the corresponding bilinear equation for Eq. (2.9) is

$$\begin{aligned} \bigl ( D_t^2 + 4 \sin ^2\bigl (\frac{1}{2} D_n\bigr ) \bigr ) f_n \cdot f_n =0. \end{aligned}$$

By contrast, the nonlinear equation that corresponds to another 1D variant

$$\begin{aligned} \bigl ( D_t^2 - 4 \sin ^2\bigl (\frac{1}{2} D_n\bigr ) \bigr ) f_n \cdot f_n =0, \end{aligned}$$

can approximate another form of the generalized NLS equation, as well as the defocusing NLS equation in a similar way.

Appendix 5: Proof of the Theorem 2.5

Firstly, we demonstrate that the determinant \(f_n=|\tilde{F}|\) satisfies the bilinear equation (1.4). According to the derivative rule of determinants, we have

$$\begin{aligned} L_+ f_n = \sum _{j,k=1}^N (L_+ \tilde{f}_{jk}) \Delta _{jk} = \sum _{j,k=1}^N \lambda _j^{-1}\delta _{jk} \Delta _{jk} = \sum _{k=1}^N \lambda _k^{-1} \Delta _{kk}, \end{aligned}$$

where \(L_+\) is defined by (B.1) and \(\Delta _{jk}\) denotes the cofactor of \(\tilde{f}_{jk}\) in \(|\tilde{F}|\). From the expansion formulae for determinant \(|\tilde{F}|\), \(\sum _{j=1}^N \tilde{f}_{jk} \Delta _{jk} = |\tilde{F}| \, (k=1,2,\ldots ,N)\) and \(\sum _{k=1}^N \tilde{f}_{jk} \Delta _{jk} = |\tilde{F}| \, (j=1,2,\ldots ,N)\), the following equations are derived immediately

$$\begin{aligned} \sum _{j,k=1}^N \lambda _k^{-1} \tilde{f}_{jk} \Delta _{jk}&= \sum _{k=1}^N \lambda _k^{-1} |\tilde{F}|, \\ \sum _{j,k=1}^N \lambda _j^{-1} \tilde{f}_{jk} \Delta _{jk}&= \sum _{j=1}^N \lambda _j^{-1} |\tilde{F}|, \end{aligned}$$

which lead to

$$\begin{aligned} \sum _{j,k=1}^N (\lambda _j^{-1} - \lambda _k^{-1}) \tilde{f}_{jk} \Delta _{jk} =0 \end{aligned}$$

or equivalently

$$\begin{aligned} \sum _{j \ne k} \lambda _k^{-1} \Delta _{jk} =0. \end{aligned}$$

Then \(L_+ f_n\) can be written as

$$\begin{aligned} L_+ f_n = \sum _{j,k=1}^N \lambda _k^{-1} \Delta _{jk} = \begin{vmatrix} \tilde{F}&\varvec{-1} \\ \varvec{\lambda ^{-1}}&0 \\ \end{vmatrix}, \end{aligned}$$

where \(\varvec{-1}=(-1,-1,\ldots ,-1)^T\) and \(\varvec{\lambda ^{-1}}=(\lambda ^{-1}_1,\lambda ^{-1}_2,\ldots ,\lambda ^{-1}_N)\). Similarly, \(L_- f_n\) and \(L_+ L_- f_n\) can also be written as bordered determinants, that is

$$\begin{aligned} L_- f_n&= \begin{vmatrix} \tilde{F}&\varvec{\lambda } \\ \varvec{-1}&0 \\ \end{vmatrix}, \\ L_+ L_- f_n&= \begin{vmatrix} \tilde{F}&\varvec{\lambda }&\varvec{-1} \\ \varvec{-1}&0&0 \\ \varvec{\lambda ^{-1}}&0&0 \\ \end{vmatrix} - \textrm{i} \begin{vmatrix} \tilde{F}&\varvec{\lambda } \\ \varvec{\lambda ^{-1}}&0 \\ \end{vmatrix} + \textrm{i} \begin{vmatrix} \tilde{F}&\varvec{-1} \\ \varvec{-1}&0 \\ \end{vmatrix}, \end{aligned}$$

where \(\varvec{\lambda }=(\lambda _1,\lambda _2,\ldots ,\lambda _N)^T\), and \(\varvec{-1}\) represents an N-dimensional row vector or column vector with all its elements equal to \(-1\).

Furthermore, based on the row–column transformations of determinants, we have

$$\begin{aligned} f_{n+\textrm{i}}&= \left| (\theta _j + \textrm{i}) \delta _{jk} - \frac{\lambda _j \textrm{i} }{\lambda _j - \lambda _k} (1-\delta _{jk}) \right| \\&= \begin{vmatrix} (\theta _j + \textrm{i}) \delta _{jk} - \frac{\lambda _k \textrm{i} }{\lambda _j - \lambda _k} (1-\delta _{jk})&\varvec{\textrm{i}} \\ \varvec{0}&1 \\ \end{vmatrix} \\&= \begin{vmatrix} \tilde{F}&\varvec{\textrm{i}} \\ \varvec{-1}&1 \\ \end{vmatrix} = |\tilde{F}| - \textrm{i} \begin{vmatrix} \tilde{F}&\varvec{-1} \\ \varvec{-1}&0 \\ \end{vmatrix}, \\ f_{n-\textrm{i}}&= \begin{vmatrix} (\theta _j - \textrm{i}) \delta _{jk} - \frac{\lambda _j \textrm{i} }{\lambda _j - \lambda _k} (1-\delta _{jk})&\varvec{\textrm{i}} \\ \varvec{0}&1 \\ \end{vmatrix} \\&= \begin{vmatrix} \theta _j \delta _{jk} - \frac{\lambda _k \textrm{i} }{\lambda _j - \lambda _k} (1-\delta _{jk})&\varvec{\textrm{i}} \\ \varvec{1}&1 \\ \end{vmatrix} \\&= \begin{vmatrix} \tilde{F}&\varvec{\lambda \textrm{i}} \\ \varvec{\lambda ^{-1}}&1 \\ \end{vmatrix} = |\tilde{F}| + \textrm{i} \begin{vmatrix} \tilde{F}&\varvec{\lambda } \\ \varvec{\lambda ^{-1}}&0 \\ \end{vmatrix}, \end{aligned}$$

where \(\varvec{\lambda \textrm{i}}=(\lambda _1 \textrm{i},\lambda _2 \textrm{i},\ldots ,\lambda _N \textrm{i})^T\) and similarly for the other bold notations. Substituting the above equations into the bilinear equation (1.4) or equivalently (B.2), we obtain

$$\begin{aligned} \begin{vmatrix} \tilde{F}&\varvec{\lambda }&\varvec{-1} \\ \varvec{-1}&0&0 \\ \varvec{\lambda ^{-1}}&0&0 \\ \end{vmatrix} |\tilde{F}| - \begin{vmatrix} \tilde{F}&\varvec{-1} \\ \varvec{\lambda ^{-1}}&0 \\ \end{vmatrix} \begin{vmatrix} \tilde{F}&\varvec{\lambda } \\ \varvec{-1}&0 \\ \end{vmatrix} + \begin{vmatrix} \tilde{F}&\varvec{-1} \\ \varvec{-1}&0 \\ \end{vmatrix} \begin{vmatrix} \tilde{F}&\varvec{\lambda } \\ \varvec{\lambda ^{-1}}&0 \\ \end{vmatrix} = 0, \end{aligned}$$

which is nothing but the Jacobi identity, thus the conclusion follows.

Next, we prove the positivity of \(f_n\). Extracting \(\lambda _j ( 1 \le j \le 2\,M)\) from the j-row of the determinant \(|\tilde{F}|\), we obtain

$$\begin{aligned} |\tilde{F}|=\left( \prod _{j=1}^M \lambda _j \lambda _j^*\right) |\hat{F}|, \end{aligned}$$

where \(\hat{F}=(\hat{f}_{jk})\) is a \(2M \times 2M\) matrix whose elements are given by

$$\begin{aligned} \hat{f}_{jk} =\lambda _j^{-1} \theta _j \delta _{jk} - \frac{\textrm{i} }{\lambda _j - \lambda _k} (1-\delta _{jk}). \end{aligned}$$

Thus, we only need to prove that \(|\hat{F}|>0\). For this purpose, following the idea of that in Villarroel (1998, Proposition 3.2), we show that the following results hold.

  1. (i)

    \(\hat{F}\) has the following structure

    $$\begin{aligned} \hat{F}= \begin{pmatrix} B & C \\ -C^*& B^\dag \\ \end{pmatrix}, \end{aligned}$$

    where \(\dag \) denotes the conjugate transpose, and \(B=(b_{jk}), C=(c_{jk})\) are \(M \times M\) matrices whose elements are defined by

    $$\begin{aligned} b_{jk}&= \lambda _j^{-1} \theta _j \delta _{jk} - \frac{\textrm{i} }{\lambda _j - \lambda _k} (1-\delta _{jk}), \\ c_{jk}&= - \frac{\textrm{i} }{\lambda _j - \lambda _k^*}. \end{aligned}$$
  2. (ii)

    \(|\hat{F}|\) is real.

  3. (iii)

    C is Hermitian, i.e., \(C^\dag =C\), and

    $$\begin{aligned} |C| = (-\frac{1}{2})^M \left( \prod _{j=1}^M {\text {Im}}{\lambda _j} \right) ^{-1} \prod _{1\le j < k \le M} \frac{|\lambda _j-\lambda _k|^2}{|\lambda _j-\lambda _k^*|^2}. \end{aligned}$$
  4. (iv)

    If \({\text {Im}}\lambda _j >0 \, (j=1,2,\ldots ,M)\), then C is negative definite; on the contrary, if \({\text {Im}}\lambda _j<0 \, (j=1,2,\ldots ,M)\), then C is positive definite.

  5. (v)

    \(\forall x,t,n \in \mathbb {R}\), \(|\hat{F}|>0\).

Obviously, \(\lambda _{M+j} = \lambda _j^*\, (j=1,2,\ldots ,M)\) imply that \(\hat{F}\) has the structure (i) and \(C^\dag =C\). We next note that matrix \(\hat{F}\) has the following property

$$\begin{aligned} \hat{F}^\dag = \begin{pmatrix} B^\dag & -C^*\\ C & B \\ \end{pmatrix} = \begin{pmatrix} \varvec{0} & I \\ I & \varvec{0} \\ \end{pmatrix} \begin{pmatrix} B & C \\ -C^*& B^\dag \\ \end{pmatrix} \begin{pmatrix} \varvec{0} & I \\ I & \varvec{0} \\ \end{pmatrix}, \end{aligned}$$

which leads to \(|\hat{F}|=|\hat{F}^\dag |\), i.e., (ii) holds.

To prove (iii), it is easy to show that

$$\begin{aligned} |C| = (-\textrm{i})^M |\tilde{C}|, \end{aligned}$$

where \(\tilde{C}\) is the Cauchy matrix \(\tilde{c}_{jk}=\frac{1}{\lambda _j - \lambda _k^*}\). The determinant of the Cauchy matrix is standard and (iii) follows.

Furthermore, to prove (iv), we know from (iii) that if \({\text {Im}}\lambda _j<0 \; (j=1,2,\ldots ,M)\) then all C’s leading principal minors are positive, that is, C is positive definite; otherwise, if \({\text {Im}}\lambda _j>0 \; (j=1,2,\ldots ,M)\), then the leading principal minors of odd order are negative and the leading principal minors of even order are positive, that is, C is negative definite.

We now prove the main claim (v). Assume that \(|\hat{F}|=0\). Then there exists a nonzero vector \((e_1^T,e_2^T)^T \in \mathbb {C}^{2M}\) satisfying \(\hat{F}(e_1^T,e_2^T)^T=\varvec{0}\) that is

$$\begin{aligned} B e_1 + C e_2&= \varvec{0}, \\ -C^*e_1 + B^\dag e_2&= \varvec{0}. \end{aligned}$$

Hence, we obtain

$$\begin{aligned} e_1^\dag C^*e_1 + e_2^\dag C e_2 =0. \end{aligned}$$

Since C is positive or negative definite, this yields \((e_1^T,e_2^T)^T=\varvec{0}\) and hence \(|\hat{F}| \ne 0\). In addition, we have \(|\hat{F}| \rightarrow +\infty \) when \(x^2+t^2+n^2\rightarrow +\infty \), which in turn implies the statement.

Appendix 6: Proof of the Theorem 2.6

Let us assume the following form

$$\begin{aligned} \varvec{\eta } = x\varvec{k}+t\varvec{\omega }+n\varvec{l}+m\varvec{j}+\cdots , \end{aligned}$$

and consider Eq. (2.14),

$$\begin{aligned} Ff\cdot f&= \sum _{\varvec{\bar{n}}, \varvec{\tilde{n}} \in \mathbb {Z}^g } F e^{2\pi \textrm{i}\left\langle \varvec{\bar{n}},\varvec{\eta }\right\rangle - \pi \left\langle \varvec{\tau }\varvec{\bar{n}}, \varvec{\bar{n}}\right\rangle } \cdot e^{2\pi \textrm{i}\left\langle \varvec{\tilde{n}},\varvec{\eta }\right\rangle - \pi \left\langle \varvec{\tau } \varvec{\tilde{n}}, \varvec{\tilde{n}}\right\rangle }\\&= \sum _{\varvec{\bar{n}}, \varvec{\hat{n}} \in \mathbb {Z}^g} F e^{2\pi \textrm{i}\left\langle \varvec{\bar{n}},\varvec{\eta }\right\rangle - \pi \left\langle \varvec{\tau }\varvec{\bar{n}}, \varvec{\bar{n}}\right\rangle } \cdot e^{2\pi \textrm{i}\left\langle \varvec{\hat{n}}-\varvec{\bar{n}},\varvec{\eta }\right\rangle - \pi \left\langle \varvec{\tau } (\varvec{\hat{n}}-\varvec{\bar{n}}), \varvec{\hat{n}}-\varvec{\bar{n}}\right\rangle }\\&= \sum _{\varvec{\bar{n}}, \varvec{\hat{n}} \in \mathbb {Z}^g} F\left( 2\pi \textrm{i} \left\langle 2\varvec{\bar{n}}-\varvec{\hat{n}}, \varvec{k}\right\rangle , 2\pi \textrm{i} \left\langle 2\varvec{\bar{n}}-\varvec{\hat{n}},\varvec{\omega }\right\rangle , \cdots \right) \\&\qquad \times e^{2\pi \textrm{i}\left\langle \varvec{\hat{n}},\varvec{\eta }\right\rangle - \pi \left\langle \varvec{\tau }\varvec{\bar{n}}, \varvec{\bar{n}}\right\rangle - \pi \left\langle \varvec{\tau } (\varvec{\hat{n}}-\varvec{\bar{n}}), \varvec{\hat{n}}-\varvec{\bar{n}}\right\rangle }\\&= \sum _{\varvec{\hat{n}} \in \mathbb {Z}^g} \hat{F}(\varvec{\hat{n}}) e^{2\pi \textrm{i}\left\langle \varvec{\hat{n}},\varvec{\eta }\right\rangle }, \end{aligned}$$

where

$$\begin{aligned} \hat{F}(\varvec{\hat{n}}) =\sum _{\varvec{\bar{n}} \in \mathbb {Z}^g} F\left( 2\pi \textrm{i} \left\langle 2\varvec{\bar{n}}-\varvec{\hat{n}}, \varvec{k}\right\rangle , 2\pi \textrm{i} \left\langle 2\varvec{\bar{n}}-\varvec{\hat{n}},\varvec{\omega }\right\rangle ,\cdots \right) e^{-\pi \left\langle \varvec{\tau }\varvec{\bar{n}}, \varvec{\bar{n}}\right\rangle - \pi \left\langle \varvec{\tau } (\varvec{\hat{n}}-\varvec{\bar{n}}), \varvec{\hat{n}}-\varvec{\bar{n}}\right\rangle }. \end{aligned}$$
(E.1)

In Eq. (E.1), we have the following “quasi” periodic relation by shifting summation index \(\varvec{\bar{n}} = \varvec{\bar{n}'} + \varvec{\delta }\) (one component is 1 and others are 0 in \(\varvec{\delta }\), e.g., \(\varvec{\delta }=(0,1,0,0)\))

$$\begin{aligned} \hat{F}(\varvec{\hat{n}})&=\sum _{\varvec{\bar{n}'} \in \mathbb {Z}^g} F\left( 2\pi \textrm{i} \left\langle 2\varvec{\bar{n}'}-\varvec{\hat{n}} + 2\varvec{\delta }, \varvec{k}\right\rangle , \cdots \right) \\&\quad \times e^{-\pi \left( \left\langle \varvec{\tau }(\varvec{\bar{n}'}+\varvec{\delta }), (\varvec{\bar{n}'}+\varvec{\delta })\right\rangle + \left\langle \varvec{\tau } (\varvec{\hat{n}}-\varvec{\bar{n}'}-\varvec{\delta }), \varvec{\hat{n}}-\varvec{\bar{n}'}-\varvec{\delta }\right\rangle \right) } \\&= \hat{F}(\varvec{\hat{n}} - 2\varvec{\delta }) e^{-2\pi \left\langle \varvec{\tau }(\varvec{\hat{n}}-\varvec{\delta }), \varvec{\delta } \right\rangle }. \end{aligned}$$

This implies that if \(\hat{F}(\varvec{s})=0\) for all possible g-dimensional vectors \(\varvec{s}\) whose components are either 0 or 1, then all other \(\hat{F}(\varvec{\hat{n}})\) are also zero.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YJ., Wang, H.A., Chang, XK. et al. Integrable Variants of the Toda Lattice. J Nonlinear Sci 34, 98 (2024). https://doi.org/10.1007/s00332-024-10072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-024-10072-0

Keywords

Mathematics Subject Classification