Skip to main content
Log in

Emergent Behaviors of a Kuramoto Ensemble Under Fading Memory

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We study the emergent dynamics of the Kuramoto model with memory effect. The Kuramoto model with memory effect belongs to the system of Volterra-type integro-differential equations on the unit circle. For the modeling of memory effect, we adopt nonlocal temporal interactions so that dynamic behaviors of oscillators are affected by memories of the past interactions. For the proposed model, we first study global well-posedness, and then, we provide a sufficient framework for the uniform boundedness of the phase diameter. We also show the emergence of complete frequency synchronization in two different ways. One is to use a bootstrap argument and the other is to use an energy functional. In both ways, boundedness of the phase diameter is needed. In particular, we show the emergence of complete phase synchronization for the case where natural frequencies are all identical. We provide several numerical examples and compare them with presented analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets (including the original figure files and code for numerical simulations) used and/or analyzed during the current study available from the corresponding author on reasonable request.

References

  • Acebron, J.A., Bonilla, L.L., Pérez Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

    MATH  Google Scholar 

  • Benedetto, D., Caglioti, E., Montemagno, U.: On the complete phase synchronization for the Kuramoto model in the mean-field limit. Commun. Math. Sci. 13, 1775–1786 (2015)

    MathSciNet  MATH  Google Scholar 

  • Bronikowski, T.A., Hall, J.E., Nohel, J.A.: Quantitative estimates for a nonlinear system of integrodifferential equations arising in reactor dynamics. SIAM J. Math. Anal. 3, 567–588 (1972)

    MathSciNet  MATH  Google Scholar 

  • Buck, J., Buck, E.: Biology of synchronous flashing of fireflies. Nature 211, 562–564 (1966)

    MATH  Google Scholar 

  • Burton, T.A.: Perturbed Volterra equations. J. Differ. Equ. 43, 168–183 (1982)

    MathSciNet  MATH  Google Scholar 

  • Burton, T.A.: Uniform stabilities for Volterra equations. J. Differ. Equ. 36, 40–53 (1980)

    MathSciNet  MATH  Google Scholar 

  • Burton, T.A.: Stability theory for Volterra equations. J. Differ. Equ. 32, 101–118 (1979)

    MathSciNet  MATH  Google Scholar 

  • Cho, H., Dong, J.-G., Ha, S.-Y.: Interplay of inertia and adaptive couplings in the emergent dynamics of Kuramoto ensemble. J. Differ. Equ. 360, 523–571 (2023)

    MathSciNet  MATH  Google Scholar 

  • Choi, Y., Ha, S.-Y., Jung, S., Kim, Y.: Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model. Phys. D 241, 735–754 (2012)

    MathSciNet  MATH  Google Scholar 

  • Choi, Y.-P., Ha, S.-Y., Morales, J.: Emergent dynamics of the Kuramoto ensemble under the effect of inertia. Discret. Contin. Dyn. Syst. 38, 4875–4913 (2018)

    MathSciNet  MATH  Google Scholar 

  • Choi, Y.-P., Ha, S.-Y., Li, Z., Xue, X., Yun, S.-B.: Complete entrainment of Kuramoto oscillators with inertia on networks via gradient-like flow. J. Differ. Equ. 257, 2225–2255 (2014)

    MathSciNet  MATH  Google Scholar 

  • Choi, Y.-P., Ha, S.-Y., Yun, S.-B.: Complete synchronization of Kuramoto oscillators with finite inertia. Phys. D 240, 32–40 (2011)

    MathSciNet  MATH  Google Scholar 

  • Chopra, N., Spong, M.W.: On exponential synchronization of Kuramoto oscillators. IEEE Trans. Autom. Control 54, 353–357 (2009)

    MathSciNet  MATH  Google Scholar 

  • Christoforou, C.C.: Systems of hyperbolic conservation laws with memory. J. Hyperbolic Differ. Equ. 4, 435–478 (2007)

    MathSciNet  MATH  Google Scholar 

  • Cushing, J.M.: Forced asymptotically periodic solutions of predator-prey systems with or without hereditary effects. SIAM J. Appl. Math. 30, 665–674 (1976)

    MathSciNet  MATH  Google Scholar 

  • Corduneanu, C.: Perturbation of linear abstract Volterra equations. J. Integr. Equ. Appl. 2, 393–401 (1990)

    MathSciNet  MATH  Google Scholar 

  • Dafermos, C.M.: Heat flow with shocks in media with memory. Indiana Univ. Math. J. 62, 1443–1456 (2013)

    MathSciNet  MATH  Google Scholar 

  • Dafermos, C.M.: Development of singularities in the motion of materials with fading memory. Arch. Ration. Mech. Anal. 91, 193–205 (1985)

    MathSciNet  MATH  Google Scholar 

  • Dong, J.-G., Xue, X.: Synchronization analysis of Kuramoto oscillators. Commun. Math. Sci. 11, 465–480 (2013)

    MathSciNet  MATH  Google Scholar 

  • Dörfler, F., Bullo, F.: On the critical coupling for Kuramoto oscillators. SIAM. J. Appl. Dyn. Syst. 10, 1070–1099 (2011)

    MathSciNet  MATH  Google Scholar 

  • Dörfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: a survey. Automatica 50, 1539–1564 (2014)

    MathSciNet  MATH  Google Scholar 

  • Ermentrout, G.B.: Synchronization in a pool of mutually coupled oscillators with random frequencies. J. Math. Biol. 22, 1–9 (1985)

    MathSciNet  MATH  Google Scholar 

  • Friedman, A.: On integral equations of Volterra type. J. Anal. Math. 11, 381–413 (1963)

    MathSciNet  MATH  Google Scholar 

  • Grimmer, R.: Existence of periodic solutions of functional differential equations. J. Math. Anal. Appl. 72, 666–673 (1979)

    MathSciNet  MATH  Google Scholar 

  • Grimmer, R., Seifert, G.: Stability properties of Volterra integrodifferential equations. J. Differ. Equ. 8, 457–474 (1970)

    MATH  Google Scholar 

  • Grossman, S.I., Miller, R.K.: Perturbation theory for Volterra integrodifferential systems. J. Differ. Equ. 19, 142–166 (1975)

    MATH  Google Scholar 

  • Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31, 113–126 (1968)

    MathSciNet  MATH  Google Scholar 

  • Ha, S.-Y., Ryoo, S.W.: Asymptotic phase-locking dynamics and critical coupling strength for the Kuramoto model. Commun. Math. Phys. 377, 811–857 (2020)

    MathSciNet  MATH  Google Scholar 

  • Hastings, S.P., McLeod, J.B.: Chaotic motion of a pendulum with oscillatory forcing. Am. Math. Mon. 100, 563–572 (1993)

    MathSciNet  MATH  Google Scholar 

  • Hayes, W.D.: On the equation for a damped pendulum under constant torque. Z. Angew. Math. Phys. 4, 398–401 (1953)

    MathSciNet  MATH  Google Scholar 

  • Hsia, C.-H., Jung, C.-Y., Kwon, B., Moon, S.: Synchronization of Kuramoto–Sakaguchi model with the distributed time-delayed interactions. Chaos Solitons Fractals 179, 114422 (2024)

    MathSciNet  MATH  Google Scholar 

  • Hsia, C.-H., Jung, C.-Y., Kwon, B., Ueda, Y.: Synchronization of Kuramoto oscillators with time-delayed interactions and phase lag effect. J. Differ. Equ. 268, 7897–7939 (2020)

    MathSciNet  MATH  Google Scholar 

  • Kuramoto, Y.: International symposium on mathematical problems in mathematical physics. Lect. Notes Theor. Phys. 30, 420 (1975)

    MATH  Google Scholar 

  • Levin, J.J.: The asymptotic behavior of the solution of a Volterra equation. Proc. Am. Math. Soc. 14, 534–541 (1963)

    MathSciNet  MATH  Google Scholar 

  • Levin, J.J., Nohel, J.A.: On a system of integro-differential equations occurring in reactor dynamics. J. Math. Mech. 9, 347–368 (1960)

    MathSciNet  MATH  Google Scholar 

  • Londen, S.-O., Nohel, J.A.: Nonlinear Volterra integro-differential equation occurring in heat flow. J. Integ. Equ. 6, 11–50 (1984)

    MathSciNet  MATH  Google Scholar 

  • MacCamy, R.C.: An integro-differential equation with application in heat flow. Q. Appl. Math. 35, 1–19 (1977)

    MathSciNet  MATH  Google Scholar 

  • Malek-Madani, R., Nohel, J.A.: Formation of singularities for a conservation law with memory. SIAM J. Math. Anal. 16, 530–540 (1985)

    MathSciNet  MATH  Google Scholar 

  • Meehan, M., O’Regan, D.: Existence theory for nonlinear Volterra integrodifferential and integral equations. Nonlinear Anal. 31, 317–341 (1998)

    MathSciNet  MATH  Google Scholar 

  • Markovitz, H.: Boltzmann and the beginnings of linear viscoelasticity. Trans. Soc. Rheol. 21, 381–398 (1977)

    MathSciNet  MATH  Google Scholar 

  • Miller, R.K.: Asymptotic stability properties of linear Volterra integrodifferential equations. J. Differ. Equ. 10, 485–506 (1971)

    MathSciNet  MATH  Google Scholar 

  • Peskin, C.S.: Mathematical Aspects of Heart Physiology. Courant Institute of Mathematical Sciences, New York (1975)

    MATH  Google Scholar 

  • Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  • Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D 143, 1–20 (2000)

    MathSciNet  MATH  Google Scholar 

  • Volterra, E.: On elastic continua with hereditary characteristics. ASME J. Appl. Mech. 18, 273–279 (1951)

    MathSciNet  MATH  Google Scholar 

  • Volterra, V.: Theory of Functionals and of Integral and Integro-Differential Equations. Blackie and Son, London, England (1930)

    MATH  Google Scholar 

  • Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967)

    MATH  Google Scholar 

  • Winfree, A.T.: The Geometry of Biological Time. Springer, New York (1980)

    MATH  Google Scholar 

  • Yeung, M.K.S., Strogatz, S.H.: Time delay in the Kuramoto model of coupled oscillators. Phys. Rev. Lett. 82, 648–651 (1999)

    MATH  Google Scholar 

Download references

Acknowledgements

The work of H. Cho was supported by the National Research Foundation of Korea(NRF) grant funded by Korea government(MSIT) (RS-2023-00253171) and the work of S.-Y. Ha was supported by NRF grant(2020R1A2C3A01003881).

Funding

Funding for this study was received from the National Research Foundation of Korea (RS-2023-00253171, 2020R1A2C3A01003881).

Author information

Authors and Affiliations

Authors

Contributions

Hangjun Cho, Seung-Yeal Ha and Myeongju Kang wrote the main manuscript text, and Myeongju Kang prepared Figs. 1, 2, 3, 4. All authors reviewed the manuscript.

Corresponding author

Correspondence to Myeongju Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Alan Champneys.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, H., Ha, SY. & Kang, M. Emergent Behaviors of a Kuramoto Ensemble Under Fading Memory. J Nonlinear Sci 35, 9 (2025). https://doi.org/10.1007/s00332-024-10099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-024-10099-3

Keywords

Mathematics Subject Classification

Navigation