Avoid common mistakes on your manuscript.
Correction to: J Nonlinear Sci https://doi.org/10.1007/s00332-023-09921-1
There are some small but annoying errors in Ihara and Yagasaki (2023). The following corrections are necessary.
-
Line 12 from below on Page 13: “\(\Vert \bar{\textbf{u}}(T)-\bar{\textbf{u}}_n (T)-\varvec{\theta }\Vert \)” should be read as “\(\Vert \bar{\textbf{u}}(T)-\bar{\textbf{u}}_n (T)\Vert .\)”
-
Line 4 on Page 18: “some” should be inserted before “\(i\in [n]\).”
In Appendix A, the dependence of the graphons \(W_k\) on \(k\in [m]\) is dropped out by mistake. It makes several wrong expressions there. They should be read as follows:
-
For Eq. (A1):
$$\begin{aligned} T=\left( 2(L_f+mL_D(C_2+\max _{k\in [m]}\Vert W_k\Vert _{L^2(I^2)}))\right) ^{-1}. \end{aligned}$$(A.1) -
For the equation below (A.1):
$$\begin{aligned} K(\textbf{u})(t) =g(\cdot )+\int _0^t\biggl (f(u(s,\cdot ),s)+\sum _{k=1}^m\int _I W_k(\cdot ,y)D_k(u(s,y)-u(s,\cdot ))dy\biggr )ds \end{aligned}$$ -
For the second and subsequent lines of the last equation on Page 36:
$$\begin{aligned}&\le \max _{t\in [0,T]}\int _0^t\biggl \Vert f(u(s,\cdot ),s)-f(v(s,\cdot ),s)\\&\quad +\sum _{k=1}^m\int _I W_k(\cdot ,y)(D_k(u(s,y)-u(s,\cdot ))-D_k(v(s,y)-v(s,\cdot ))dy\biggr \Vert ds\\&\le T\max _{t\in [0,T]}\biggl \Vert L_f|u(t,\cdot )-v(t,\cdot )|\\&\quad +L_D\sum _{k=1}^m\int _I W_k(\cdot ,y)|u(t,y)-u(t,\cdot )-v(t,y)+v(t,\cdot )|dy\biggr \Vert \\&\le T\max _{t\in [0,T]}\biggl (L_f\Vert \textbf{u}(t)-\textbf{v}(t)\Vert +L_D\sum _{k=1}^m\biggl (\biggl \Vert \int _I W_k(\cdot ,y)|u(t,\cdot )-v(t,\cdot )|dy\biggr \Vert \\&\quad +\biggl \Vert \int _I W_k(\cdot ,y)|u(t,y)-v(t,y)|dy\biggr \Vert \biggr ). \end{aligned}$$ -
For the first equation on Page 37:
$$\begin{aligned} \biggl \Vert \int _I W_k(\cdot ,y)|u(t,\cdot )-v(t,\cdot )|dy\biggr \Vert \le C_2\Vert \textbf{u}(t)-\textbf{v}(t)\Vert \end{aligned}$$ -
For the second equation on Page 37:
$$\begin{aligned} \biggl \Vert \int _I W_k(\cdot ,y)|u(t,y)-v(t,y)|dy\biggr \Vert \le \Vert W_k\Vert _{L^2(I^2)}\,\Vert \textbf{u}(t)-\textbf{v}(t)\Vert , \end{aligned}$$ -
For the third equation on Page 37:
$$\begin{aligned}&\Vert K(\textbf{u})-K(\textbf{v})\Vert \\&\quad \le T(L_f+mL_D(C_2+\max _{k\in [m]}\Vert W_k\Vert _{L^2(I^2)}))\Vert \textbf{u}(t)-\textbf{v}(t)\Vert =\frac{1}{2}\Vert \textbf{u}(t)-\textbf{v}(t)\Vert . \end{aligned}$$
These corrections do not affect the main conclusions of the paper.
Reference
Ihara, R., Yagasaki, K.: Continuum limits of coupled oscillator networks depending on multiple sparse graphs. J. Nonlin. Sci. 33, 62 (2023)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ihara, R., Yagasaki, K. Correction to: Continuum Limits of Coupled Oscillator Networks Depending on Multiple Sparse Graphs. J Nonlinear Sci 35, 27 (2025). https://doi.org/10.1007/s00332-024-10122-7
Published:
DOI: https://doi.org/10.1007/s00332-024-10122-7