Skip to main content
Log in

Amoeba-based Chaotic Neurocomputing: Combinatorial Optimization by Coupled Biological Oscillators

  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

We demonstrate a neurocomputing system incorporating an amoeboid unicellular organism, the true slime mold Physarum, known to exhibit rich spatiotemporal oscillatory behavior and sophisticated computational capabilities. Introducing optical feedback applied according to a recurrent neural network model, we induce that the amoeba’s photosensitive branches grow or degenerate in a network-patterned chamber in search of an optimal solution to the traveling salesman problem (TSP), where the solution corresponds to the amoeba’s stably relaxed configuration (shape), in which its body area is maximized while the risk of being illuminated is minimized.Our system is capable of reaching the optimal solution of the four-city TSP with a high probability. Moreover, our system can find more than one solution, because the amoeba can coordinate its branches’ oscillatory movements to perform transitional behavior among multiple stable configurations by spontaneously switching between the stabilizing and destabilizing modes. We show that the optimization capability is attributable to the amoeba’s fluctuating oscillatory movements. Applying several surrogate data analyses, we present results suggesting that the amoeba can be characterized as a set of coupled chaotic oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takamatsu, A., Fujii, T. and Endo, I., “Time Delay Effect in a Living Coupled Oscillator System with the Plasmodium of Physarum Polycephalum,” Phys. Rev. Lett. 85, pp. 2026-2029, 2000.

    Article  Google Scholar 

  2. Takamatsu, A., Tanaka, R., Yamada, H., Nakagaki, T., Fujii, T. and Endo, I., “Spatiotemporal Symmetry in Rings of Coupled Biological Oscillators of Physarum Plasmodial Slime Mold,” Phys. Rev. Lett. 87, pp. 078102, 2001.

    Article  Google Scholar 

  3. Takamatsu, A., Tanaka, R. and Fujii, T., “Hidden Symmetry in Chains of Biological Coupled Oscillators,” Phys. Rev. Lett. 92, pp. 228102, 2004.

    Article  Google Scholar 

  4. Takamatsu, A. “Spontaneous Switching Among Multiple Spatio-Temporal Patterns in Three-Oscillator Systems Constructed with Oscillatory Cells of True Slime Mold,” Physica D 223, pp. 180-188, 2006.

    Article  Google Scholar 

  5. Nakagaki, T., Yamada, H. and Toth, A., “Maze-Solving by an Amoeboid Organism,” Nature 407, pp. 470, 2000.

    Article  Google Scholar 

  6. Nakagaki, T., Yamada, H. and Hara, M., “Smart Network Solutions in an Amoeboid Organism,” Biophys. Chem. 107, pp. 1-5, 2004.

    Article  Google Scholar 

  7. Nakagaki, T., Iima, M., Ueda, T., Nishiura, Y., Saigusa, T., Tero, A., Kobayashi, R. and Showalter, K., “Minimum-Risk Path Finding by an Adaptive Amoebal Network,” Phys. Rev. Lett. 99, pp. 068104, 2007.

    Article  Google Scholar 

  8. Saigusa, T., Tero, A., Nakagaki, T. and Kuramoto, Y., “Amoebae Anticipate Periodic Events,” Phys. Rev. Lett. 100, pp. 018101, 2008.

    Article  Google Scholar 

  9. Aono, M. and Gunji, Y-P. “Beyond Input-Output Computings: Error-Driven Emergence with Parallel Non-Distributed Slime Mold Computer,” BioSystems 71, pp. 257-287, 2003.

    Article  Google Scholar 

  10. Aono, M. and Hara, M. “Dynamic Transition among Memories on Neurocomputer Composed of Amoeboid Cell with Optical Feedback,” in Proceedings of The 2006 International Symposium on Nonlinear Theory and its Applications, pp. 763-766, 2006.

  11. Aono, M. and Hara, M., “Amoeba-based Nonequilibrium Neurocomputer Utilizing Fluctuations and Instability,” in UC 2007, LNCS, 4618 (Aki, S. G., et al. eds.), pp. 41-54. Springer-Verlag, Berlin, 2007.

  12. Aono, M., Hara, M. and Aihara, K., “Amoeba-based Neurocomputing with Chaotic Dynamics,” Commun. ACM 50, 9, pp. 69-72, 2007.

    Article  Google Scholar 

  13. Aono, M. and Hara, M., “Spontaneous Deadlock Breaking on Amoeba-Based Neurocomputer,” BioSystems 91, pp. 83-93, 2008.

    Article  Google Scholar 

  14. Aono, M., Hara, M., Aihara, K. and Munakata, T, “Amoeba-Based Emergent Computing: Combinatorial Optimization and Autonomous Meta-Problem Solving,” to appear in International Journal of Unconventional Computing, 2009.

  15. Tsuda, S., Aono, M. and Gunji, Y-P., “Robust and emergent Physarum logical-computing,” BioSystems 73, pp. 45-55, 2004.

    Article  Google Scholar 

  16. Tsuda, S., Zauner, K. P. and Gunji, Y-P., “Robot Control with Biological Cells,” in Proceedings of Sixth International Workshop on Information Processing in Cells and Tissues, pp. 202-216, 2005.

  17. Tero, A., Kobayashi, R. and Nakagaki, T., “Physarum Solver: A Biologically Inspired Method of Road-Network Navigation,” Physica A 363, pp. 115-119, 2006.

    Article  Google Scholar 

  18. Adamatzky, A., “Physarum machine: Implementation of a Kolmogorov-Uspensky machine on a biological substrate,” to appear in Parallel Processing Letters (PPL), 17, 4, pp. 455–467, 2007.

    Article  MathSciNet  Google Scholar 

  19. Ohl, C. and Stockem, W., “Distribution and Function of Myosin II as a Main Constituent of the Microfilament System in Physarum Polycephalum,” Europ. J. Protistol, 31, pp. 208-222, 1995.

    Google Scholar 

  20. Nakamura, A. and Kohama, K., “Calcium Regulation of the Actin-Myosin Interaction of Physarum Polycephalum,” International Review of Cytology, 191, pp. 53-98, 1999.

    Article  Google Scholar 

  21. Ueda, T., Matsumoto, K., Akitaya, T. and Kobatake, Y., “Spatial and Temporal Organization of Intracellular Adenine Nucleotides and Cyclic Nucleotides in Relation to Rhythmic Motility in Physarum Polycephalum,” Exp. Cell Res. 162, 2, pp. 486-494, 1986.

    Article  Google Scholar 

  22. Ueda, T., Mori, Y. and Kobatake, Y., “Patterns in the Distribution of Intracellular ATP Concentration in Relation to Coordination of Amoeboid Cell Behavior in Physarum Polycephalum,” Exp. Cell Res. 169, 1, pp. 191-201, 1987.

    Article  Google Scholar 

  23. Nakagaki, T., Yamada, H. and Ueda, T., “Interaction Between Cell Shape and Contraction Pattern,” Biophys. Chem. 84, pp. 195-204, 2000.

    Article  Google Scholar 

  24. Arbib, M. A. (ed.). The Handbook of Brain Theory and Neural Networks (Second Edition), The MIT Press, Cambridge, Massachusetts, 2003.

  25. Hopfield, J. J. and Tank, D. W., “Computing with Neural Circuits: A model,” Science 233, pp. 625-633, 1986.

    Article  Google Scholar 

  26. Holland, J. H., Adaptation in Natural and Artificial Systems (Second Edition), The MIT Press, Cambridge, Massachusetts, 1992.

    Google Scholar 

  27. Bonabeau, E., Dorigo, M. and Theraulaz, G., Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press, New York, 1999.

    MATH  Google Scholar 

  28. Munakata, T.,Fundamentals of the New Artificial Intelligence: Neural, Evolutionary, Fuzzy and More (Second Edition), Springer-Verlag, Berlin, 2008.

    Google Scholar 

  29. Garey, M. R. and Johnson, D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and co., New York, 1979.

    Google Scholar 

  30. Ueda, T., Mori, Y., Nakagaki, T. and Kobatake, Y., “Action Spectra for Superoxide Generation and UV and Visible Light Photoavoidance in Plasmodia of Physarum Polycephalum,” Photochem. Photobiol. 48, pp. 705-709, 1988.

    Article  Google Scholar 

  31. Ott, E., Chaos in Dynamical Systems (2nd edition), Cambridge University Press, Cambridge, 2002.

    Google Scholar 

  32. Scheinkman, A. and LeBaron, B., “Nonlinear Dynamics and Stock Returns,” J. Business 62, pp. 311-337, 1989.

    Article  Google Scholar 

  33. Schreiber, T. and Schmitz, A., “Improved Surrogate Data for Nonlinearity Tests,” Phys. Rev. Lett. 77, pp. 635-638, 1996.

    Article  Google Scholar 

  34. Small, M., Yu, D. and Harrison, R. G., “Surrogate Test for Psuedoperiodic Time Series Data,”Phys. Rev. Lett. 87, pp. 188101, 2001.

    Article  Google Scholar 

  35. Luo X., Nakamura T., Small M., “Surrogate Test to Distinguish between Chaotic and Pseudoperiodic Time Series,”. Phys. Rev. E 71: 026230, 2005.

    Article  Google Scholar 

  36. Thiel, M., Romano, M. C., Kurths, J., Rolfs, M. and Kliegl, R., “Twin Surrogates to Test for Complex Synchronisation,” Europhys. Lett. 75 pp. 535-541, 2006.

    Article  Google Scholar 

  37. Kennel, M. B., “Statistical Test for Dynamical Nonstationarity in Observed Time-Series Data,” Phys. Rev. E 56, pp. 316-321, 1997.

    Article  Google Scholar 

  38. Wayland, R., Bromley, D., Pickett, D. and Passamante, A., “Recognizing Determinism in a Time Series,” Phys. Rev. Lett. 70, pp. 580-582, 1993.

    Article  Google Scholar 

  39. Rosetnstein, M. T., Collins, J. J. and De Luca, C. J., “A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets,” Physica D 65, pp. 117-134, 1993.

    Article  MathSciNet  Google Scholar 

  40. Hegger, R., Kantz, H. and Schreiber, T., “Practical Implementation of Nonlinear Time Series Methods: The TISEAN Package,” Chaos 9, pp. 413-435, 1999.

    Article  MATH  Google Scholar 

  41. Ott, E., Grebogi, C. and Yorke, J., “Controlling Chaos,” Phys. Rev. Lett. 64, pp. 1196, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  42. Kaneko, K. and Tsuda, I., Complex Systems: Chaos and Beyond - A Constructive Approach with Applications in Life Sciences, Springer-Verlag, New York, 2001.

    MATH  Google Scholar 

  43. Aihara, K., Takabe, T. and Toyoda, M., “Chaotic Neural Networks,” Phys. Lett. A 144, pp. 333-340, 1990.

    Article  MathSciNet  Google Scholar 

  44. Hasegawa, M., Ikeguchi, T. and Aihara, K., “Combination of Chaotic Neurodynamics with the 2-opt Algorithm to Solve Traveling Salesman Problems,” Phys. Rev. Lett. 79, pp. 2344-2347, 1997.

    Article  Google Scholar 

  45. Steinbock, O., Toth, A. amd Showalter, K., “Navigating Complex Labyrinths: Optimal Paths from Chemical Waves,” Science, 267, pp. 868-871, 1995.

    Article  Google Scholar 

  46. Motoike, I. and Yoshikawa, K., “Information Operations with an Excitable Field,” Phys. Rev. E, 59, pp. 5354-5360, 1999.

    Article  Google Scholar 

  47. Adamatzky, A., De Lacy Costello, B. and Asai, T. Reaction-Diffusion Computers, Elsevier, Amsterdam, 2005.

    Google Scholar 

  48. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight, T. F. Jr., Nagpal, R., Rauch, E., Sussman, G. J. and Weiss, R., “Amorphous Computing,” Commun. ACM 43, 5, pp. 74-82, 2000.

    Article  Google Scholar 

  49. Reif, J. H. and Labean, T. H., “Autonomous Programmable Biomolecular Devices using Self-Assembled DNA Nanostructures,” Commun. ACM 50, 9, pp. 46–53, 2007.

    Article  Google Scholar 

  50. Conrad, M., “On Design Principles for a Molecular Computer,” Commun. ACM 28, 5, pp. 464-480, 1985.

    Article  Google Scholar 

  51. Christodoulides, N., Lederer, F. and Silberberg, Y., “Discritizing Light Behaviour in Linear and Nonlinear Waveguide Lattices,” Nature 424, pp. 817-823, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Aono.

About this article

Cite this article

Aono, M., Hirata, Y., Hara, M. et al. Amoeba-based Chaotic Neurocomputing: Combinatorial Optimization by Coupled Biological Oscillators. New Gener. Comput. 27, 129–157 (2009). https://doi.org/10.1007/s00354-008-0058-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-008-0058-4

Keywords:

Navigation