Skip to main content
Log in

Combining Document Classification and Ontology Alignment for Semantically Enriching Web Services

  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract.

Semantic Web Services represent the basic blocks for building a network of distributed and heterogeneous applications, without human intervention. Despite the high level of automatism that can be achieved with Semantic Web Services technology, this is not broadly adopted. One factor that hinders the widespread usage of this technology is the effort required to annotate semantically ordinary services. This paper presents AWSA (Automatic Web Service Annotator), an approach for easing the conversion of Web Services into Semantic Web enabled services. The main idea behind AWSA is to annotate Web Services with concepts defined by existing ontologies, which have been used for annotating similar services in the past. This approach combines text preprocessing, document classification and ontology alignment techniques to extract valuable information conveyed in standard service descriptions, reduce the search space and find proper concepts for the service being annotated, respectively. Experimental evaluations show the feasibility of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Baeza-Yates, R., Ribeiro-Neto, B., Modern Information Retrieval, Addison-Wesley, 1999.

  2. Bechhofer, S., Van Harmelen, F., Hendler, J. A., Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F., Stein, L. A., OWL web ontology language reference, World Wide Web Consortium, Recommendation REC-owl-ref-20040210 (Feb. 2004).

  3. Belhajjame, K., Embury, S. M., Paton, N. W., Stevens, R., Goble, C. A., “Automatic annotation of Web Services based on workflow definitions,” ACM Transaction on the Web, 2, 2, pp. 1–34, 2008.

    Article  Google Scholar 

  4. Bell, D., De Cesare, S., Iacovelli, N., Lycett, M., Merico, A., “A framework for deriving Semantic Web Services,” Information Systems Frontiers, 9, 1, pp. 69–84, 2007.

    Article  Google Scholar 

  5. Blake, M. B., Nowlan, M. F., “Taming Web Services from the wild,” IEEE Internet Computing, 12, 5, pp. 62–69, 2008.

    Article  Google Scholar 

  6. Brickley, D., Guha, R. V., RDF Vocabulary Description Language 1.0: RDF Schema, World Wide Web Consortium Recommendation (Feb. 2004).

  7. Burstein, M., Bussler, C., Zaremba, M., Finin, T., Huhns, M. N., Paolucci, M., Sheth, A. P., Williams, S., “A Semantic Web Services architecture,” IEEE Internet Computing, 9, 5, pp. 72–81, 2005.

    Article  Google Scholar 

  8. Crasso, M., Zunino, A., Campo, M., “AWSC: An approach to Web Service classification based on machine learning techniques,” Inteligencia Artificial: Revista Iberoamericana de IA, 37, 12, pp. 25–36, 2008.

  9. Crasso, M., Zunino, A., Campo, M., “Easy Web Service discovery: a Query-by-Example approach,” Science of Computer Programming, 71, 2, pp. 144–164, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  10. Crasso, M., Zunino, A., Campo, M., “Query by example for Web Services, in: SAC '08: Proc. of the 2008 ACM symposium on Applied computing, ACM, New York, NY, USA, 2008.

  11. Cristianini, N., Shawe-Taylor, J., An introduction to support Vector Machines and other kernel-based learning methods, Cambridge University Press, New York, NY, USA, 2000.

    Google Scholar 

  12. Daga, A., De Cesare, S., Lycett, M., Partridge, C., “An ontological approach for recovering legacy business content,” in HICSS '05: Proc. of the 38th Annual Hawaii International Conference on System Sciences, IEEE Computer Society, Washington, DC, USA, 2005.

  13. Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A., “Learning to match ontologies on the Semantic Web,” The VLDB Journal, 12, 4, pp. 303–319, 2003.

    Article  Google Scholar 

  14. Dong, X., Halevy, A. Y., Madhavan, J., Nemes, E., Zhang, J., “Similarity search for Web Services,” in (e)Proc. of the Thirtieth International Conference on Very Large Data Bases, Morgan Kaufmann, Toronto, Canada, 2004.

  15. Duo, Z., Zi, L., Bin, X., “Web service annotation using ontology mapping,” in Service-Oriented System Engineering, 2005 (SOSE 2005), IEEE International Workshop, 2005.

  16. Ehrig, M., Ontology Alignment: Bridging the Semantic Gap, Semantic Web and Beyond, Springer, 2006.

  17. Ehrig, M., Staab, S., “QOM - Quick Ontology Mapping,” in International Semantic Web Conference, LNCS 3298, Springer, 2004.

  18. Ehrig, M., Sure, Y., “FOAM - framework for ontology alignment and mapping - results of the ontology alignment evaluation initiative,” in Integrating Ontologies, CEUR Workshop Proceedings, 156, CEUR-WS.org, 2005.

  19. Erickson, J., Siau, K., “Web Service, Service-Oriented Computing, and Service-Oriented Architecture: Separating hype from reality,” Journal of Database Management, 19, 3, pp. 42–54, 2008.

    Google Scholar 

  20. Fallside, D. C., Walmsley, P., “XML schema part 0: Primer second edition,” W3C recommendation, W3C, Oct. 2004.

  21. Ferdinand, M., Zirpins, C., Trastour, D., “Lifting XML schema to OWL,” in: ICWE, LNCS 3140, Springer, 2004.

  22. Foster, I., Kesselman, K., The Grid 2: Blueprint for a New Computing Infrastructure Second Edition (The Elsevier Series in Grid Computing), Morgan Kaufman, 2004.

  23. Garofalakis, J. D., Panagis, Y., Sakkopoulos, E., Tsakalidis, A. K., “Contemporary Web Service Discovery Mechanisms,” Journal of Web Engineering, 5, 3, pp. 265–290, 2006.

    Google Scholar 

  24. Gomez-Perez, A., Corcho-Garcia, O., Fernandez-Lopez, M., Ontological Engineering, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

  25. Hepp, M., “Semantic Web and semantic Web services: father and son or indivisible twins?,” IEEE Internet Computing, 10, 2, pp. 85–88, 2006.

    Article  Google Scholar 

  26. Heß, A., Johnston, E., Kushmerick, N., “ASSAM: A tool for semi-automatically annotating semantic Web Services,” in International SemanticWeb Conference, LNCS 3298, Springer, Hiroshima, Japan, 2004.

  27. Heß, A., Kushmerick, N., “Learning to attach semantic metadata to Web Services,” in International Semantic Web Conference, LNCS 2870, Springer, 2003.

  28. Iannone, L., Palmisano, I., Fanizzi, N., “An algorithm based on counterfactuals for concept learning in the Semantic Web,” Applied Intelligence, 26, 2, pp. 139–159, 2007.

    Article  Google Scholar 

  29. Kay, M., XSL transformations (XSLT) version 2.0, Candidate recommendation, W3C, Jan. 2007.

  30. Korfhage, R. R., Information Storage and Retrieval, John Wiley & Sons, 1997.

  31. Lee, D. L., Chuang, H., Seamons, K. E., “Document ranking and the vector-space model,” IEEE Software, 14, 2, pp. 67–75, 1997.

  32. Lerman, K., Plangprasopchok, A., Knoblock, C. A., “Automatically labeling the inputs and outputs of Web Services,” in AAAI, AAAI Press, Boston, MA, USA, 2006.

  33. Lewis, D. D., “Naive (Bayes) at forty: The independence assumption in information retrieval,” in 10th European Conference on Machine Learning, LNCS 1398, Springer, Chemnitz, Germany, 1998.

  34. Manola, F., Miller, E., RDF primer, W3C recommendation, W3C (Feb. 2004).

  35. Martin, D., Burstein, M., Mcdermott, D., Mcilraith, S., Paolucci, M., Sycara, K., Mcguinness, D. L., Sirin, E., Srinivasan, N., “Bringing semantics to Web Services with OWL-S,” World Wide Web, 10, 3, pp. 243–277, 2007.

    Article  Google Scholar 

  36. Maruyama, H., “New trends in e-business: From B2B to Web Services,” New Generation Computing, 20, 1, pp. 125–139, 2002.

    Article  Google Scholar 

  37. Mateos, C., Crasso, M., Zunino, A., Campo, M., “Supporting ontology-based semantic matching of Web Services in Movilog,” in IBERAMIA-SBIA, LNCS 4140, Springer, 2006.

  38. McCool, R., “Rethinking the semantic Web. part I,” IEEE Internet Computing, 9, 6, pp. 86–87, 2005.

  39. McCool, R., “Rethinking the SemanticWeb, part II,” IEEE Internet Computing, 10, 1, pp. 93–95, 2006.

  40. Mizoguchi, R., “Tutorial on ontological engineering part 2: Ontology development, tools and languages,” New Generation Computing, 22, 1, pp. 61–96, 2004.

    Article  MATH  Google Scholar 

  41. Noy, N. F., Musen, M., “PROMPT: Algorithm and tool for automated ontology merging and alignment,” in The Twelfth Conference on Innovative Applications of Artificial Intelligence, Menlo Park, CA, 2000.

  42. Oldham, N., Thomas, C., Sheth, A. P., Verma, K., “METEOR-S Web Service Annotation Framework with Machine Learning Classification,” in SWSWPC, LNCS 3387, Springer, 2004.

  43. Paar, A., Reuter, J., Soldatos, J., Stamatis, K., Polymenakos, L., “A formally specified ontology management API as a registry for ubiquitous computing systems,” Applied Intelligence, 30, 1, pp. 37–46, 2009.

    Article  Google Scholar 

  44. Pan, J. Z., Horrocks, I., “Rdfs(fa): Connecting RDF(S) and OWL DL,” IEEE Transactions on Knowledge and Data Engineering, 19, 2, pp. 192–206, 2007.

  45. Patil, A. A., Oundhakar, S. A., Sheth, A. P., Verma, K., “METEOR-SWeb Service annotation framework,” in: WWW '04: Proc. of the 13th international conference on World Wide Web, ACM Press, New York, NY, USA, 2004.

  46. Reif, G., Gall, H., Jazayeri, M., “WEESA: Web engineering for semantic web applications,” in The 14th International World Wide Web Conference, ACM Press, 2005.

  47. Resnik, P., “Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language,” Journal of Artificial Intelligence Research, 11, pp. 95–130, 1999.

  48. Rocchio, J. J., Relevance feedback in information retrieval, in: The Smart retrieval system- experiments in automatic document processing, Prentice-Hall, Englewood Cliffs, NJ, 1971.

  49. Sabou, M., Pan, J., “Towards semantically enhanced Web Service repositories,” Web Semantics: Science, Services and Agents on the World Wide Web, 5, 2, pp. 142–150, 2007.

    Article  Google Scholar 

  50. Sabou, M., Wroe, C., Goble, C. A., Stuckenschmidt, H., “Learning domain ontologies for Semantic Web Service descriptions,” Journal of Web Semantics, 3, 4, pp. 340–365, 2005.

    Google Scholar 

  51. Salton, G., Wong, A., Yang, C. S., “A vector space model for automatic indexing,” Communications of the ACM, 18, 11, pp. 613–620, 1975.

  52. Shamsfard, M., Barforoush, A. A., “Learning ontologies from natural language texts” International Journal of Human-Computer Studies, 60, pp. 17–63, 2004.

    Article  Google Scholar 

  53. Sivashanmugam, K., Verma, K., Sheth, A. P., Miller, J. A., “Adding semantics to Web Services standards,” in The 2003 International Conference on Web Services, CSREA Press, Las Vegas, NV, USA, 2003.

  54. Van Rijsbergen, C. J., Information Retrieval, 2nd ed., Butterworths, London, 1979.

  55. Wang, J. Z., Ali, F., “An Efficient Ontology Comparison Tool for Semantic Web Applications,” in Web Intelligence, IEEE Computer Society, 2005.

  56. Witte, R., Li, Q., Zhang, Y., Rilling, J., “Text mining and software engineering: An integrated source code and document analysis approach,”, IET Software Journal, 2 pp. 3–16, 2008.

  57. Witten, I. H., Frank, E., “Data Mining: Practical Machine Learning Tools and Techniques,” Morgan Kaufmann Series in Data Management Systems, 2nd ed., Morgan Kaufmann, 2005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Crasso.

About this article

Cite this article

Crasso, M., Zunino, A. & Campo, M. Combining Document Classification and Ontology Alignment for Semantically Enriching Web Services. New Gener. Comput. 28, 371–403 (2010). https://doi.org/10.1007/s00354-009-0094-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-009-0094-8

Keywords