Skip to main content
Log in

A Hybrid Knowledge Push Method Based on Trust-Aware and Item-Cluster Oriented to Product Design

  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

A knowledge push system as a proactive method of knowledge management, and is an effective way to push knowledge to designers in the product design process. Knowledge push can help to improve design efficiency and quality, but the knowledge pushed to designers is less applicable in engineering scenarios. To improve the quality of knowledge push, we propose the trust-aware and item-cluster strategies to extract the two nearest neighbors of the designers and the design knowledge. Next, we adapt a fusion model for the two nearest neighbors, which is solved based on the gradient descent algorithm. Finally, the rating prediction that the designer gives to the knowledge component is the decision point of the knowledge push system, where we propose our final hybrid knowledge push method. A knowledge push system of CNC machine tools design is used to confirm that our method outperforms the other widely adopted methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Azadjalal, M.M., Moradi, P., Abdollahpouri, A., Jalili, M.: A trust-aware recommendation method based on pareto dominance and confidence concepts. Knowl. Based Syst. 116, 130–143 (2017). https://doi.org/10.1016/j.knosys.2016.10.025

    Article  Google Scholar 

  2. Chen, H.H., Jin, H., Cui, X.L.: Hybrid followee recommendation in microblogging systems. Sci. China (Inf. Sci.) 60, 012102:1–012102:14 (2017). https://doi.org/10.1007/s11432-016-5551-7

  3. Cheng, H.T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., Anil, R., Haque, Z., Hong, L., Jain, V., Liu, X., Shah, H.: Wide & deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, DLRS 2016, pp. 7–10. ACM, New York (2016). https://doi.org/10.1145/2988450.2988454

  4. Chovanak, T., Kassak, O., Kompan, M., Bielikova, M.: Fast streaming behavioural pattern mining. New Gener. Comput. 36(4), 365–391 (2018). https://doi.org/10.1007/s00354-018-0044-4

    Article  Google Scholar 

  5. Deng, S., Huang, L., Xu, G., Wu, X., Wu, Z.: On deep learning for trust-aware recommendations in social networks. IEEE Trans. Neural Netw. Learn. Syst. 28(5), 1164–1177 (2017). https://doi.org/10.1109/TNNLS.2016.2514368

    Article  Google Scholar 

  6. Dwivedi, P., Bharadwaj, K.K.: Effective trust-aware e-learning recommender system based on learning styles and knowledge levels. J. Educ. Technol. Soc. 16(4), 201–216 (2013)

    Google Scholar 

  7. Fan, Z.P., Feng, Y., Sun, Y.H., Feng, B., You, T.H.: A framework on compound knowledge push system oriented to organizational employees. In: Deng, X., Ye, Y. (eds.) Internet Network Economics, pp. 622–630. Springer, Berlin (2005)

    Chapter  Google Scholar 

  8. Gharibshah, J., Jalili, M.: Connectedness of users-items networks and recommender systems. Appl. Math. Comput. 243, 578–584 (2014). https://doi.org/10.1016/j.amc.2014.06.024

    Article  MathSciNet  MATH  Google Scholar 

  9. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’99, pp. 230–237. ACM, New York (1999). https://doi.org/10.1145/312624.312682

  10. Hsieh, M.Y., Weng, T.H., Li, K.C.: A keyword-aware recommender system using implicit feedback on hadoop. J. Parallel Distrib. Comput. 116, 63–73 (2018). https://doi.org/10.1016/j.jpdc.2017.12.008

    Article  Google Scholar 

  11. Jiang, H., Yin, P., Guo, L., Wang, Y.: Knowledge push based on design flow and user capacity model. MATEC Web Conf. 139, 00012 (2017). https://doi.org/10.1051/matecconf/201713900012

    Article  Google Scholar 

  12. Ju, C.H., Xu, C.H.: A new collaborative recommendation approach based on users clustering using artificial bee colony algorithm. Sci. World J. 2013, 1–9 (2013). https://doi.org/10.1155/2013/869658

    Article  Google Scholar 

  13. Kobayashi, I., Saito, M.: A study on an information recommendation system that provides topical information related to user’s inquiry for information retrieval. New Gener. Comput. 26(1), 39–48 (2007). https://doi.org/10.1007/s00354-007-0033-5

    Article  MATH  Google Scholar 

  14. Lang, K.: Newsweeder: Learning to filter netnews. In: Prieditis, A., Russell, S. (eds.) Machine Learning Proceedings 1995, pp. 331–339. Morgan Kaufmann, San Francisco (1995). https://doi.org/10.1016/B978-1-55860-377-6.50048-7. http://www.sciencedirect.com/science/article/pii/B9781558603776500487

    Chapter  Google Scholar 

  15. Lee, S.: Improving jaccard index using genetic algorithms for collaborative filtering. In: Tan, Y., Takagi, H., Shi, Y. (eds.) Advances in Swarm Intelligence, pp. 378–385. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  16. Li, S., Karatzoglou, A., Gentile, C.: Collaborative filtering bandits. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’16, pp. 539–548. ACM, New York (2016). https://doi.org/10.1145/2911451.2911548

  17. Liu, T.: Intelligent knowledge recommending approach for new product development based on workflow context matching. Concurr. Eng. 24(4), 318–329 (2016). https://doi.org/10.1177/1063293X16640319

    Article  Google Scholar 

  18. Ng, W.X., Chan, H.K., Teo, W.K., Chen, I.M.: Capturing the tacit knowledge of the skilled operator to program tool paths and tool orientations for robot belt grinding. Int. J. Adv. Manuf. Technol. 91(5), 1599–1618 (2017). https://doi.org/10.1007/s00170-016-9813-8

    Article  Google Scholar 

  19. Nilashi, M., Ibrahim, O., Bagherifard, K.: A recommender system based on collaborative filtering using ontology and dimensionality reduction techniques. Expert Syst. Appl. 92, 507–520 (2018). https://doi.org/10.1016/j.eswa.2017.09.058

    Article  Google Scholar 

  20. Paradarami, T.K., Bastian, N.D., Wightman, J.L.: A hybrid recommender system using artificial neural networks. Expert Syst. Appl. 83, 300–313 (2017). https://doi.org/10.1016/j.eswa.2017.04.046

    Article  Google Scholar 

  21. Peclat, R.N., Ramos, G.N.: Semantic analysis for identifying security concerns in software procurement edicts. New Gener. Comput. 36(1), 21–40 (2018). https://doi.org/10.1007/s00354-017-0022-2

    Article  Google Scholar 

  22. Phan, N., Hoai Dang, P., Huynh, H.: Similarity kernel for user-based collaborative filtering recommendation system. EAI Endorsed Trans. Context-aware Syst. Appl. 4, 152759 (2017). https://doi.org/10.4108/eai.6-7-2017.152759

    Article  Google Scholar 

  23. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: An open architecture for collaborative filtering of netnews. ACM Conference on Computer Supported Cooperative Work, pp. 175–186 (1994). https://doi.org/10.1145/192844.192905

  24. Ruder, S.: An overview of gradient descent optimization algorithm. CoRR 1–14 (2016). arxiv:abs/1609.04747

  25. Santos Jr, E.B., Goularte, R., Manzato, M.G.: Personalized collaborative filtering: a neighborhood model based on contextual constraints. 29th Annual ACM Symposium on Applied Computing, pp. 919–924 (2014). https://doi.org/10.1145/2554850.2555017

  26. Schreiber, G., Akkermans, H., Anjewierden, A.: Knowledge management. In: Knowledge Engineering and Management—The CommonKADS Methodology, pp. 69–83. MIT Press, Cambridge (2000)

  27. Seo, Y.D., Kim, Y.G., Lee, E., Baik, D.K.: Personalized recommender system based on friendship strength in social network services. Expert Syst. Appl. 69, 135–148 (2017). https://doi.org/10.1016/j.eswa.2016.10.024

    Article  Google Scholar 

  28. Sheugh, L., Alizadeh, S.H.: A novel 2D-graph clustering method based on trust and similarity measures to enhance accuracy and coverage in recommender systems. Inf. Sci. 432, 210–230 (2018). https://doi.org/10.1016/j.ins.2017.12.007

    Article  MathSciNet  Google Scholar 

  29. Sun, W., Ma, Q.Y., Gao, T.Y., Chen, S.: Knowledge-intensive support for product design with an ontology-based approach. Int. J. Adv. Manuf. Technol. 48(5), 421–434 (2010). https://doi.org/10.1007/s00170-009-2296-0

    Article  Google Scholar 

  30. Tarus, J.K., Niu, Z., Kalui, D.: A hybrid recommender system for e-learning based on context awareness and sequential pattern mining. Soft Comput. 22(8), 2449–2461 (2018). https://doi.org/10.1007/s00500-017-2720-6

    Article  Google Scholar 

  31. Viktoratos, I., Tsadiras, A., Bassiliades, N.: Combining community-based knowledge with association rule mining to alleviate the cold start problem in context-aware recommender systems. Expert Syst. Appl. 101, 78–90 (2018). https://doi.org/10.1016/j.eswa.2018.01.044

    Article  Google Scholar 

  32. Wang, Z.S., Tian, L., Wu, Y.H., Liu, B.B.: Personalized knowledge push system based on design intent and user interest. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. (2015). https://doi.org/10.1177/0954406215584395

    Google Scholar 

  33. Xu, Y., Yin, G., Nie, Y., He, Z., Dai, X.: Research on an active knowledge push service based on collaborative intent capture. J. Netw. Comput. Appl. 36(6), 1418–1430 (2013). https://doi.org/10.1016/j.jnca.2013.04.010

    Article  Google Scholar 

  34. Yan, Y., Yang, N., Hao, J., Wang, G.: A context modeling method of knowledge recommendation for designers. In: 2016 International Conference on Information System and Artificial Intelligence (ISAI), pp. 492–496 (2016). https://doi.org/10.1109/ISAI.2016.0111

  35. Yokota, D., Fujita, S.: Article recommender for feed readers with a loss compensation based on the TF-IDF weight. In: 2010 First International Conference on Networking and Computing, pp. 298–299 (2010). https://doi.org/10.1109/IC-NC.2010.21

  36. Zafra, A., Romero, C., Ventura, S., Herrera-Viedma, E.: Multi-instance genetic programming for web index recommendation. Expert Syst. Appl. 36(9), 11470–11479 (2009). https://doi.org/10.1016/j.eswa.2009.03.059

    Article  Google Scholar 

  37. Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.Y.: Collaborative knowledge base embedding for recommender systems. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pp. 353–362. ACM, New York (2016). https://doi.org/10.1145/2939672.2939673

  38. Zhang, Sy, Gu, Y., Liu, Xj, Tan, Jr: A knowledge push technology based on applicable probability matching and multidimensional context driving. Front. Inf. Technol. Electron. Eng. 19(2), 235–245 (2018). https://doi.org/10.1631/FITEE.1700763

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the China National Natural Science Foundation (Grant no. 51675478).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Gu, Y. & Yi, G. A Hybrid Knowledge Push Method Based on Trust-Aware and Item-Cluster Oriented to Product Design. New Gener. Comput. 37, 339–357 (2019). https://doi.org/10.1007/s00354-019-00053-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-019-00053-3

Keywords

Navigation