Skip to main content
Log in

Chemotaxis-Inspired Control for Multi-Agent Coordination: Formation Control by Two Types of Chemotaxis Controllers

  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

This paper investigates the control of multi-agent systems inspired by chemotaxis of microorganisms. Chemotaxis is a biological phenomenon wherein organisms in an environment are attracted to food but move away from toxins. The problem addressed here is a formation control problem, i.e., a design problem of distributed controllers wherein the relative positions of agents become the desired positions with the progression of time. To solve this problem, we introduce a performance index that quantifies the achieved degree of a desired formation, and decompose it into local indices that can be embedded in the distributed controllers. Based on this, we propose formation controllers inspired by chemotaxis of Escherichia coli (E. coli), where each agent moves with the aim of increasing the corresponding local performance index using the chemotaxis controller of E. coli. In addition, to improve the accuracy of the resulting formation, we present Paramecium caudatum (P. caudatum)-type formation controllers by replacing the chemotaxis controller of E. coli used above with that of P. caudatum. The effectiveness is demonstrated by a comparison with the E. coli-type formation controllers via numerical simulation. This result implies that various chemotaxis controllers can be used in our method and the performance of the resulting controllers can be improved by choosing an appropriate chemotaxis controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Adler, J.: Chemotaxis in bacteria. Science 153(3737), 708–716 (1966)

    Article  Google Scholar 

  2. Almagor, M., Ron, A., Bar-Tana, J.: Chemotaxis in Tetrahymena thermophila. Cell Motil. 1(2), 261–268 (1981)

    Article  Google Scholar 

  3. Azuma, S., Owaki, K., Shinohara, N., Sugie, T.: Performance analysis of chemotaxis controllers: Which has better chemotaxis controller, Escherichia coli or Paramecium caudatum? IEEE/ACM Trans. Comput. Biol. Bioinf. 13(4), 730–741 (2016)

    Article  Google Scholar 

  4. Bai, L., Eyiyurekli, M., Breen, D.E.: An emergent system for self-aligning and self-organizing shape primitives. In: Proceedings of the Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems, pp. 445–454 (2008)

  5. Bai, L., Eyiyurekli, M., Lelkes, P.I., Breen, D.E.: Self-organized sorting of heterotypic agents via a chemotaxis paradigm. Sci. Comput. Program. 78(5), 594–611 (2013)

    Article  Google Scholar 

  6. Berg, H.C., Brown, D.A.: Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239(5374), 500–504 (1972)

    Article  Google Scholar 

  7. Dhariwal, A., Sukhatme, G., Requicha, A.A.G.: Bacterium-inspired robots for environmental monitoring. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1436–1443 (2004)

  8. Eyiyurekli, M., Bai, L., Lelkes, P.I., Breen, D.E.: Chemotaxis-based sorting of self-organizing heterotypic agents. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 1315–1322 (2010)

  9. Fatès, N., Vlassopoulos, N.: A robust aggregation method for quasi-blind robots in an active environment. In: Proceedings of the 2011 International Conference on Swarm Intelligence, pp. 1–10 (2011)

  10. Grimes, S., Bai, L., McDonald, A.W.E., Breen, D.E.: Directing chemotaxis-based spatial self-organisation via biased, random initial conditions. Int. J. Parallel Emergent Distrib. Syst. 34(4), 380–399 (2019)

    Article  Google Scholar 

  11. Hellung-Larsen, P., Leick, V., Tommerup, N.: Chemoattraction in Tetrahymena: on the role of chemokinesis. Biol. Bull. 170(3), 357–367 (1986)

    Article  Google Scholar 

  12. Izumi, S., Azuma, S., Sugie, T.: Multi-robot control inspired by bacterial chemotaxis: coverage and rendezvous via networking of chemotaxis controllers. IEEE Trans. Robot. (submitted)

  13. Izumi, S., Azuma, S., Sugie, T.: Coverage control inspired by bacterial chemotaxis. In: Proceedings of the 33rd IEEE Symposium on Reliable Distributed Systems, pp. 34–39 (2014)

  14. Lytridis, C., Kadar, E.E., Virk, G.S.: A systematic approach to the problem of odour source localisation. Auton. Robots 20(3), 261–276 (2006)

    Article  Google Scholar 

  15. Lytridis, C., Virk, G.S., Rebour, Y., Kadar, E.E.: Odor-based navigational strategies for mobile agents. Adapt. Behav. 9(3–4), 171–187 (2001)

    Article  Google Scholar 

  16. Marques, L., Nunes, U., de Almeida, A.T.: Olfaction-based mobile robot navigation. Thin Solid Films 418(1), 51–58 (2002)

    Article  Google Scholar 

  17. Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods in Multiagent Networks. Princeton University Press, Princeton (2010)

    Book  Google Scholar 

  18. Murata, S., Konagaya, A., Kobayashi, S., Saito, H., Hagiya, M.: Molecular robotics: a new paradigm for artifacts. New Generat. Comput. 31(1), 27–45 (2013)

    Article  Google Scholar 

  19. Nurzaman, S.G., Matsumoto, Y., Nakamura, Y., Koizumi, S., Ishiguro, H.: ‘Yuragi’-based adaptive mobile robot search with and without gradient sensing: from bacterial chemotaxis to a Levy walk. Adv. Robot. 25(16), 2019–2037 (2011)

    Article  Google Scholar 

  20. Oh, H., Shirazi, A.R., Sun, C., Jin, Y.: Bio-inspired self-organising multi-robot pattern formation: a review. Robot. Auton. Syst. 91, 83–100 (2017)

    Article  Google Scholar 

  21. Oyekan, J., Gu, D., Hu, H.: Visual imaging of invisible hazardous substances using bacterial inspiration. IEEE Trans. Syst. Man Cybernet. Syst. 43(5), 1105–1115 (2013)

    Article  Google Scholar 

  22. Oyekan, J., Hu, H.: Bacteria controller implementation on a physical platform for pollution monitoring. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation, pp. 3781–3786 (2010)

  23. Oyekan, J., Hu, H., Gu, D.: A novel bio-inspired distributed coverage controller for pollution monitoring. In: Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation, pp. 1651–1656 (2011)

  24. Pugh, J., Martinoli, A.: Inspiring and modeling multi-robot search with particle swarm optimization. In: Proceedings of the 2007 IEEE Swarm Intelligence Symposium, pp. 332–339 (2007)

  25. Russell, R.A., Bab-Hadiashar, A., Shepherd, R.L., Wallace, G.G.: A comparison of reactive robot chemotaxis algorithms. Robot. Auton. Syst. 45(2), 83–97 (2003)

    Article  Google Scholar 

  26. Tso, W., Adler, J.: Negative chemotaxis in Escherichia coli. J. Bacteriol. 118(2), 560–576 (1974)

    Article  Google Scholar 

  27. Van Houten, J.: Two mechanisms of chemotaxis in Paramecium. J. Comp. Physiol. 127(2), 167–174 (1978)

    Article  Google Scholar 

  28. Van Houten, J., Hansma, H., Kung, C.: Two quantitative assays for chemotaxis in Paramecium. J. Comp. Physiol. 104(2), 211–223 (1975)

    Article  Google Scholar 

  29. Yang, B., Ding, Y., Jin, Y., Hao, K.: Self-organized swarm robot for target search and trapping inspired by bacterial chemotaxis. Robot. Auton. Syst. 72, 83–92 (2015)

    Article  Google Scholar 

  30. Yang, J., Wang, X., Bauer, P.: V-shaped formation control for robotic swarms constrained by field of view. Appl. Sci. 8(11), 2120 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsaku Izumi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by JSPS KAKENHI Grant numbers 17H03280 and 19K15016.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izumi, S., Azuma, Si. Chemotaxis-Inspired Control for Multi-Agent Coordination: Formation Control by Two Types of Chemotaxis Controllers. New Gener. Comput. 38, 303–324 (2020). https://doi.org/10.1007/s00354-020-00093-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-020-00093-0

Keywords

Navigation