Skip to main content

Advertisement

Log in

Ensemble Methods for Heart Disease Prediction

  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

Heart disease prediction is a critical task regarding human health. It is based on deriving an Machine Learning model from medical parameters to predict risk levels. In this work, we propose and test novel ensemble methods for heart disease prediction. Randomness analysis of distance sequences is utilized to derive a classifier, which is served as a base estimator of a bagging scheme. Method is successfully tested on medical Spectf dataset. Additionally, a Graph Lasso and Ledoit–Wolf shrinkage-based classifier is developed for Statlog dataset which is a UCI data. These two algorithms yield comparatively good accuracy results: 88.7 and 88.8 for Spectf and Statlog, respectively. These proposed algorithms provide promising results and novel classification methods that can be utilized in various domains to improve performance of ensemble methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Agarwal, S., Tomar, D.: A feature selection based model for software defect prediction. Assessment 65, (2014)

  2. Alcover, P.M., Guillamón, A., Ruiz, M.D.C.: A new randomness test for bit sequences. Informatica 24(3), 339–356 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bashir, S., Khan, Z.S., Khan, F.H., Anjum, A., Bashir, K.: Improving heart disease prediction using feature selection approaches. In: 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 619–623. IEEE (2019)

  4. Bashir, S., Qamar, U., Khan, F.H., Javed, M.Y.: Mv5: a clinical decision support framework for heart disease prediction using majority vote based classifier ensemble. Arab J Sci Eng 39(11), 7771–7783 (2014)

    Article  Google Scholar 

  5. Bashir, S., Qamar, U., Khan, F.H.: Bagmoov: a novel ensemble for heart disease prediction bootstrap aggregation with multi-objective optimized voting. Austral. Phys. Eng. Sci. Med. 38(2), 305–323 (2015)

    Article  Google Scholar 

  6. Breiman, L.: Bagging predictors. Mach Learn 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Breiman, L.: Random forests. Mach Learn 45(1), 5–32 (2001)

    Article  Google Scholar 

  8. Brown, G., Pocock, A., Zhao, M.J., Luján, M.: Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. J Mach Learn Res 13(1), 27–66 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2), 121–167 (1998)

    Article  Google Scholar 

  10. Chen, A.H., Huang, S.Y., Hong, P.S., Cheng, C.H., Lin, E.J.: Hdps: Heart disease prediction system. In: 2011 computing in cardiology. IEEE, pp. 557–560 (2011)

  11. Dietterich, T.G.: Ensemble methods in machine learning. In: International Workshop on Multiple Classifier Systems. Springer, Berlin, pp. 1–15 (2000)

  12. Durairaj, M., Revathi, V.: Prediction of heart disease using back propagation mlp algorithm. Int J Sci Technol Res 4(8), 235–239 (2015)

    Google Scholar 

  13. Fister, I., Fister, I., Jr., Yang, X.S., Brest, J.: A comprehensive review of firefly algorithms. Swarm Evol Comput 13, 34–46 (2013)

    Article  Google Scholar 

  14. Flennerhag, S.: Introduction to python ensembles (2020). https://www.dataquest.io/blog/introduction-to-ensembles/

  15. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat., 1189–1232 (2001)

  16. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)

    Article  Google Scholar 

  17. Hu, X., Cercone, N.: Learning in relational databases: a rough set approach. Comput. Intell. 11(2), 323–338 (1995)

    Article  Google Scholar 

  18. Juszczak, P., Tax, D., Duin, R.P.: Feature scaling in support vector data description. In: Proc. asci. Citeseer, pp. 95–102 (2002)

  19. Karayılan, T., Kılıç, Ö.: Prediction of heart disease using neural network. In: 2017 International Conference on Computer Science and Engineering (UBMK). IEEE, pp. 719–723 (2017)

  20. Lakshmanaprabu, S., Mohanty, S.N., Krishnamoorthy, S., Uthayakumar, J., Shankar, K., et al.: Online clinical decision support system using optimal deep neural networks. Appl. Soft Comput. 81, 105487 (2019)

    Article  Google Scholar 

  21. Lakshmanaprabu, S., Mohanty, S.N., Shankar, K., Arunkumar, N., Ramirez, G.: Optimal deep learning model for classification of lung cancer on ct images. Future Gen. Comput. Syst. 92, 374–382 (2019)

    Article  Google Scholar 

  22. Ledoit, O., Wolf, M.: A well conditioned estimator for large dimensional covariance matrices (2000)

  23. Long, N.C., Meesad, P.: An optimal design for type-2 fuzzy logic system using hybrid of chaos firefly algorithm and genetic algorithm and its application to sea level prediction. J. Intell. Fuzzy Syst. 27(3), 1335–1346 (2014)

    Article  MathSciNet  Google Scholar 

  24. Long, N.C., Meesad, P., Unger, H.: A highly accurate firefly based algorithm for heart disease prediction. Expert Syst. Appl. 42(21), 8221–8231 (2015)

    Article  Google Scholar 

  25. Malav, A., Kadam, K., Kamat, P.: Prediction of heart disease using k-means and artificial neural network as hybrid approach to improve accuracy. Int. J. Eng. Technol. 9(4), 3081–3085 (2017)

    Article  Google Scholar 

  26. Medhekar, D.S., Bote, M.P., Deshmukh, S.D.: Heart disease prediction system using naive bayes. Int. J. Enhanced Res. Sci. Technol. Eng. 2(3) (2013)

  27. Moguerza, J.M., Muñoz, A., et al.: Support vector machines with applications. Stat. Sci. 21(3), 322–336 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Mythili, T., Mukherji, D., Padalia, N., Naidu, A.: A heart disease prediction model using svm-decision trees-logistic regression (sdl). Int. J. Comput. Appl. 68(16), (2013)

  29. Parzen, E.: On spectral analysis with missing observations and amplitude modulation. In: Sankhyā: The Indian Journal of Statistics, Series A, pp. 383–392 (1963)

  30. Pattekari, S.A., Parveen, A.: Prediction system for heart disease using naïve bayes. Int. J. Adv. Comput. Math. Sci. 3(3), 290–294 (2012)

    Google Scholar 

  31. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data, vol. 9. Springer, Berlin (2012)

    MATH  Google Scholar 

  32. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  34. Radhimeenakshi, S.: Classification and prediction of heart disease risk using data mining techniques of support vector machine and artificial neural network. In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom). IEEE, pp. 3107–3111 (2016)

  35. Raybaut, P.: Spyder-documentation. Available online at: pythonhosted. org (2009)

  36. Rish, I., et al.: An empirical study of the naive bayes classifier. In: IJCAI 2001 workshop on empirical methods in artificial intelligence, vol. 3, pp. 41–46 (2001)

  37. Rusk, N.: Deep learning. Nat. Methods 13(1), 35 (2016)

    Article  Google Scholar 

  38. Sahu, B., Dash, S., Nandan Mohanty, S., Kumar Rout, S.: Ensemble comparative study for diagnosis of breast cancer datasets. Int. J. Eng. Technol. 7(4.15), 281–285 (2018)

  39. Sahu, B., Mohanty, S., Rout, S.: A hybrid approach for breast cancer classification and diagnosis. EAI Endors. Trans. Scalable Inf. Syst. 6(20) (2019)

  40. sklearn: Random forest classifier (2020). https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

  41. Subbalakshmi, G., Ramesh, K., Rao, M.C.: Decision support in heart disease prediction system using naive bayes. Indian J. Comput. Sci. Eng. (IJCSE) 2(2), 170–176 (2011)

    Google Scholar 

  42. Swain, M., Kisan, S., Chatterjee, J.M., Supramaniam, M., Mohanty, S.N., Jhanjhi, N., Abdullah, A.: Hybridized machine learning based fractal analysis techniques for breast cancer classification

  43. Turabieh, H.: A hybrid ann-gwo algorithm for prediction of heart disease. Am. J. Oper. Res. 6(2), 136–146 (2016)

    Google Scholar 

  44. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Experimental comparison of representation methods and distance measures for time series data. Data Min. Knowl. Discov. 26(2), 275–309 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Yusuf “oblomov” Karacaören and Mehmet Fatih “quintall” Karadeniz for their support for conducting the experiments and development of the algorithm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talha Karadeniz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karadeniz, T., Tokdemir, G. & Maraş, H.H. Ensemble Methods for Heart Disease Prediction. New Gener. Comput. 39, 569–581 (2021). https://doi.org/10.1007/s00354-021-00124-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-021-00124-4

Keywords

Navigation