Skip to main content
Log in

Uncertainty Analysis in Ontology-Based Knowledge Representation

  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

There are various real-world applications and areas, knowledge that handles with ambiguity, imperfect, or partial are difficult to capture. Such situations cause problems to discover new knowledge while dealing with decision-making and information retrieval. Ontologies are description-based logic but not able to handle the uncertain or incomplete knowledge in specific application domains. Therefore, it is very important to deal with uncertainty in ontologies. Moreover, we need to handle uncertainty for organizing the web data, so that machines can easily understand and retrieve the desired information efficiently and accurately. In this paper, we have identified various uncertainties in ontology/ies to achieve above objectives, based on different classification of ontology like intra-ontology, inter-ontology, and external ontology using different operations. Furthermore, we have carried out impact analysis of uncertainty using different context and situations to ontology and its operations for how and where uncertainties have to be represented and what semantics are considerable. In the literature, we have found that various researchers have been working on identifying the uncertainties in different domains of application like vague, inaccurate, missing, etc. Despite of identification of these uncertainties, we have also mapped the various situations and context related to ontology which is missing in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://en.wikipedia.org/wiki/Knowledge_management.

  2. https://en.wikipedia.org/wiki/Information_retrieval.

  3. https://en.wikipedia.org/wiki/Information_integration.

  4. https://en.wikipedia.org/wiki/E-learning_(theory).

  5. https://en.wikipedia.org/wiki/Health_care.

References

  1. Markman, A.B.: Knowledge Representation. Psychology Press, New York (2013)

    Book  Google Scholar 

  2. Sowa, J.F. (ed.): Principles of Semantic Networks: Explorations in the Representation of Knowledge. Morgan Kaufmann, New York (2014)

    MATH  Google Scholar 

  3. Baader, B.F.: Logic-based knowledge representation. In: Broy, M., Denert, E. (eds.) Artificial Intelligence Today, pp. 13–41. Springer, Berlin (1999). https://doi.org/10.1007/3-540-48317-9_2

    Chapter  Google Scholar 

  4. Mylopoulos, J., Levesque, H.: An overview of knowledge representation. GWAI-83 76, 143–157 (1983)

    Article  Google Scholar 

  5. Barsalou, L.W.: Frames, concepts, and conceptual fields. Lawrence Erlbaum Associates, Inc (1992)

  6. Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 1–17. Springer, Berlin (2009)

    Google Scholar 

  7. Anand, S., Verma, A.: Development of ontology for smart hospital and implementation using uml and rdf. Int. J. Comput. Sci. Issues (IJCSI) 7(5), 206 (2010)

    Google Scholar 

  8. Hazman, M., El-Beltagy, S.R., Rafea, A.: A survey of ontology learning approaches. Int. J. Comput. Appl. 22(9), 36–43 (2011)

    Google Scholar 

  9. Sharma, A., Kumar, S.: Semantic web-based information retrieval models: a systematic survey. In: International Conference on Recent Developments in Science, Engineering and Technology, vol. 1230, pp. 204–222. Springer (2019)

  10. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquisition 5, 199–220 (1993)

    Article  Google Scholar 

  11. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and methods. Data Knowl. Eng. 25(1–2), 161–197 (1998)

    Article  Google Scholar 

  12. Lytvyn, V., Vysotska, V., Dosyn, D., Burov, Y.: Method for ontology content and structure optimization, provided by a weighted conceptual graph. Webology 15(2), 66–85 (2018)

    Google Scholar 

  13. Wang, Q., Pan, X., Huang, L., Zhang, B., Jiang, Z., Ji, H., Knight, K.: Describing a knowledge base. arXiv preprint arXiv:1809.01797 (2018)

  14. Amrouch, S., Mostefai, S.: Survey on the literature of ontology mapping, alignment and merging. In: 2012 International Conference on Information Technology and e-Services, vol. 2012, pp. 1–5, IEEE (2012)

  15. Rowe, W.D.: Understanding uncertainty. Risk Anal. 14(5), 743–750 (1994)

    Article  Google Scholar 

  16. Walker, W..E., Harremoës, P., Rotmans, J., Van Der Sluijs, J..P., Van Asselt, M..B., Janssen, P., Krayer von Krauss, M..P.: Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support. Integr. Assess. 4(1), 5–17 (2003)

    Article  Google Scholar 

  17. Dragos, V.: Detection of contradictions by relation matching and uncertainty assessment. Proc. Comput. Sci. 112, 71–80 (2017)

    Article  Google Scholar 

  18. Dragos, V.: An ontological analysis of uncertainty in soft data. In: Proceedings of the 16th International Conference on Information Fusion, pp. 1566–1573, IEEE (2013)

  19. Jurado, K., Ludvigson, S.C., Ng, S.: Measuring uncertainty. Am. Econ. Rev. 105(3), 1177–1216 (2015)

    Article  Google Scholar 

  20. Xu, X., Wu, Y., Chen, J.: Fuzzy fca based ontology mapping. In: 2010 First International Conference on Networking and Distributed Computing, vol. 2010, pp. 181–185, IEEE (2010)

  21. Wang, P., Xu, B.: Debugging ontology mappings: a static approach. Comput. Inf. 27(1), 21–36 (2008)

    Google Scholar 

  22. Idoudi, R., Ettabaa, K.S., Hamrouni, K., Solaiman, B.: An evidence based approach for multiple similarity measures combining for ontology mapping. In: International Image Processing, Applications and Systems Conference, vol. 2014, pp. 1–6, IEEE (2014)

  23. Liu, J., Zheng, B.-J., Luo, L.-M., Zhou, J.-S., Zhang, Y., Yu, Z.-T.: Ontology representation and mapping of common fuzzy knowledge. Neurocomputing 215, 184–195 (2016)

    Article  Google Scholar 

  24. Vargas-Vera, M.: The implementation of DSSim: a multi-agent ontology mapping system. In: Information Retrieval and Management: Concepts, Methodologies, Tools, and Applications, vol. I, pp. 1217–1238. IGI Global (2018)

  25. Ivanova, T.I.: Managing uncertainty in ontology mapping in e-learning context. In: 2019 International Conference on Information Technologies (InfoTech), vol. 2019, pp. 1–4, IEEE (2019)

  26. Blasch, E.P., Dorion, É., Valin, P., Bossé, E.: Ontology alignment using relative entropy for semantic uncertainty analysis. In: Proceedings of the IEEE 2010 National Aerospace & Electronics Conference, vol. 2010, pp. 140–148, IEEE (2010)

  27. Jan, S., Shah, I., Khan, I., Khan, F., Usman, M.: Similarity measures and their aggregation in ontology matching. Int. J. Comput. Sci. Telecommun. 3(5), 52–57 (2012)

    Google Scholar 

  28. Chowdhury, N.A., Dou, D.: Improving the accuracy of ontology alignment through ensemble fuzzy clustering. In: OTM Confederated International Conferences “On the Move to Meaningful Internet Systems”, vol. 7045, pp. 826–833. Springer (2011)

  29. Truong, H.B., Duong, T.H., Nguyen, N.T.: A hybrid method for fuzzy ontology integration. Cybern. Syst. 44(2–3), 133–154 (2013)

    Article  Google Scholar 

  30. Todorov, K., Hudelot, C., Popescu, A., Geibel, P.: Fuzzy ontology alignment using background knowledge. Internat J. Uncertain. Fuzziness Knowl.-Based Syst. 22(01), 75–112 (2014)

    Article  MathSciNet  Google Scholar 

  31. Idoudi, R., Ettabaa, K.S., Solaiman, B., Hamrouni, K.: Ontology knowledge mining for ontology alignment. Int. J. Comput. Intell. Syst. 9(5), 876–887 (2016)

    Article  Google Scholar 

  32. Niepert, M., Meilicke, C., Stuckenschmidt, H.: A probabilistic-logical framework for ontology matching. In: Twenty-Fourth AAAI Conference on Artificial Intelligence, vol. 24, pp. 1413–1418 (2010)

  33. Castano, S., Ferrara, A., Montanelli, S., Varese, G.: Ontology and instance matching. In: Paliouras, G., Spyropoulos, C.D., Tsatsaronis, G. (eds.) Knowledge-Driven Multimedia Information Extraction and Ontology Evolution, pp. 167–195. Springer (2011)

  34. Albagli, S., Ben-Eliyahu-Zohary, R., Shimony, S.E.: Markov network based ontology matching. J. Comput. Syst. Sci. 78(1), 105–118 (2012)

    Article  MathSciNet  Google Scholar 

  35. Liu, L., Yang, F., Zhang, P., Wu, J.-Y., Hu, L.: Svm-based ontology matching approach. Int. J. Autom. Comput. 9(3), 306–314 (2012)

    Article  Google Scholar 

  36. Cui, K., Ling, X.-H., Yao, W.-S., Fu, Y.-C.: An ontology matching algorithm based on Markov network. Comput. Engineering 11, 209–213 (2013)

    Google Scholar 

  37. Zhang, Y., Panangadan, A., Prasanna, V.K.: Ufom: Unified fuzzy ontology matching. In: Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014), vol. 2014, pp. 787–794. IEEE (2014)

  38. Li, C., Zhao, P., Wu, J., Cui, Z.: Anatomy ontology matching using Markov logic networks. Scientifica, vol. 2016, pp. 1–7 (2016)

  39. Krishnamurthy, S., Janardanan, A., Akoramurthy, B.: Rough set based ontology matching. Int. J. Rough Sets Data Anal. (IJRSDA) 5(2), 46–68 (2018)

    Article  Google Scholar 

  40. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the semantic web. J. Web Semant. 6(4), 291–308 (2008)

    Article  Google Scholar 

  41. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical owl-dl reasoner. J. Web Semant. 5(2), 51–53 (2007)

    Article  Google Scholar 

  42. Khan, J.A., Kumar, S.: Owl, rdf, rdfs inference derivation using jena semantic framework & pellet reasoner. In: 2014 International Conference on Advances in Engineering & Technology Research (ICAETR-2014), vol. 2014, pp. 1–8. IEEE (2014)

  43. Zhang, X., Xiao, G., Lin, Z.: A tableau algorithm for handling inconsistency in owl. In: European Semantic Web Conference, vol. 5554, pp. 399–413. Springer (2009)

  44. Zhang, S., Sun, Y., Peng, Y., Wang, X., et al.: A practical tool for uncertainty in owl ontologies. In: Proc. 10th IASTED Int. Conf, vol. 674, p. 235 (2010)

  45. Pührer, J., Heymans, S., Eiter, T.: Dealing with inconsistency when combining ontologies and rules using dl-programs. In: Extended Semantic Web Conference, vol. 6088, pp. 183–197. Springer (2010)

  46. Töpper, G., Knuth, M., Sack, H.: Dbpedia ontology enrichment for inconsistency detection. In: Proceedings of the 8th International Conference on Semantic Systems, vol. 8, pp. 33–40 (2012)

  47. Sheng, Z., Wang, X., Shi, H., Feng, Z.: Checking and handling inconsistency of dbpedia. In: International Conference on Web Information Systems and Mining, vol. 7529, pp. 480–488. Springer (2012)

  48. Li, D., Lin, Y., Huang, H., Tian, X.: Measuring ontology inconsistency based on Dempster-Shafer theory. J. Comput. Res. Dev. 50(3), 559 (2013)

    Google Scholar 

  49. Bienvenu, M., Bourgaux, C.: Inconsistency-tolerant querying of description logic knowledge bases. In: Reasoning Web International Summer School, vol. 9885, pp. 156–202. Springer (2016)

  50. Lam, J.S.C., Sleeman, D., Pan, J.Z., Vasconcelos, W.: A fine-grained approach to resolving unsatisfiable ontologies. J. Data Semant. 4900, 62–95 (2008)

    MATH  Google Scholar 

  51. Fu, X., Zhang, Y., Qi, G.: A graph-based approach to ontology debugging in dl-lite. In: Joint International Semantic Technology Conference, pp. 33–46. Springer (2014)

  52. Fu, X., Zhang, Y., Qi, G.: Grod: Graph-based ontology debugging system. In: Chinese Semantic Web and Web Science Conference, pp. 87–94. Springer (2014)

  53. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B.: Repairing unsatisfiable concepts in owl ontologies. In: European Semantic Web Conference, vol. 4011, pp. 170–184. Springer (2006)

  54. Ji, Q., Gao, Z., Huang, Z., Zhu, M.: Semantic precision and recall for evaluating incoherent ontology mappings. In: International Conference on Active Media Technology, vol. 7669, pp. 338–347. Springer (2012)

  55. Schlobach, S., Huang, Z., Cornet, R., Van Harmelen, F.: Debugging incoherent terminologies. J. Autom. Reason. 39(3), 317–349 (2007)

    Article  MathSciNet  Google Scholar 

  56. Qi, G., Hunter, A.: Measuring incoherence in description logic-based ontologies. Semant. Web 4825, 381–394 (2007)

    Article  Google Scholar 

  57. Paulheim, H.: Knowledge graph refinement: A survey of approaches and evaluation methods. Semant. Web 8(3), 489–508 (2017)

    Article  Google Scholar 

  58. Lassila, O., Swick, R.R., et al.: Resource description framework (rdf) model and syntax specification (1998)

  59. Manola, F., Miller, E., McBride, B., et al.: RDF primer. W3C Recommen. 10(1–107), 6 (2004)

    Google Scholar 

  60. Beckett, D.: RDF/xml syntax specification w3c recommendation. http://www.w3.org/TR/rdf-syntax-grammar/ (2004). Accessed 30 Jan 2014

  61. Kumar, N., Kumar, S.: Querying RDF and OWL data source using sparql. In: 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), vol. 2013, pp. 1–6. IEEE (2013)

  62. Yang, Y., Calmet, J.: Ontobayes: An ontology-driven uncertainty model. In: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), vol. 1, pp. 457–463. IEEE (2005)

  63. Ding, Z., Peng, Y., Pan, R.: Bayesowl: Uncertainty modeling in semantic web ontologies. In: Ma, Z. (ed.) Soft Computing in Ontologies and Semantic Web, vol. 204, pp. 3–29. Springer, Berlin (2006). https://doi.org/10.1007/978-3-540-33473-6_1

    Chapter  Google Scholar 

  64. Keskisärkkä, R., Blomqvist, E., Lind, L., Hartig, O.: Capturing and querying uncertainty in rdf stream processing. In: Keet, C.M., Dumontier, M. (eds.) International Conference on Knowledge Engineering and Knowledge Management, pp. 37–53. Springer (2020)

  65. Abidi, A., Tobji, M.A.B., Hadjali, A., Yaghlane, B.B.: A general framework for querying possibilistic rdf data. In: 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI), vol. 30, pp. 158–162. IEEE (2018)

  66. Li, G., Yan, L., Ma, Z.: Pattern match query over fuzzy rdf graph. Knowl.-Based Syst. 165, 460–473 (2019)

    Article  Google Scholar 

  67. Lian, X., Chen, L.: Efficient query answering in probabilistic rdf graphs. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, vol. 11, pp. 157–168 (2011)

  68. Zhao, L., Munne, R.F., Kertkeidkachorn, N., Ichise, R.: Missing rdf triples detection and correction in knowledge graphs. In: Joint International Semantic Technology Conference, pp. 164–180. Springer (2017)

  69. Fleischhacker, D., Völker, J., Stuckenschmidt, H.: Mining rdf data for property axioms. In: OTM Confederated International Conferences “On the Move to Meaningful Internet Systems”, pp. 718–735. Springer (2012)

  70. Kellou-Menouer, K., Kedad, Z.: Discovering types in rdf datasets. In: European Semantic Web Conference, vol. 9341, pp. 77–81. Springer (2015)

  71. Zhang, D.: High-speed train control system big data analysis based on the fuzzy rdf model and uncertain reasoning. Int. J. Comput. Commun. Control 12(4), 577–591 (2017)

    Article  Google Scholar 

  72. Kumar, S., Singh, M., De, A.: Owl-based ontology indexing and retrieving algorithms for semantic search engine. In: 2012 7th International Conference on Computing and Convergence Technology (ICCCT), pp. 1135–1140. IEEE (2012)

  73. Hartmann, J., Sure, Y., Haase, P., Palma, R., Suarez-Figueroa, M.: Omv–ontology metadata vocabulary. In: ISWC, vol. 3729. Citeseer (2005)

  74. Maedche, A., Zacharias, V.: Clustering ontology-based metadata in the semantic web. In: European Conference on Principles of Data Mining and Knowledge Discovery, vol. 2431, pp. 348–360. Springer (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar Anand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, S.K., Kumar, S. Uncertainty Analysis in Ontology-Based Knowledge Representation. New Gener. Comput. 40, 339–376 (2022). https://doi.org/10.1007/s00354-022-00162-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-022-00162-6

Keywords

Navigation