Skip to main content
Log in

DNA Concentration Regulator That can be Driven for a Long Time

  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

A molecular robot is an autonomous micro/nano machine that mounts a molecular controller connecting the sensor and actuator systems. A major control problem of a molecular robot is to maintain the actuator operation at the desired level. This requires a regulator that adjusts the concentration of a specific DNA strand of a system to the desired level to be appropriately implemented on a chemical reaction system made of molecular interactions among DNA strands. However, although there are several research results on DNA concentration regulators, there is a major problem: the regulators normally work only within a limited period because of the finiteness problem of gate and fuel strands. The operating time of the controller is an important control performance index and is a prerequisite for its practical applications. In this study, the design of a renewable DNA concentration regulator simplified to an experimentally feasible level is proposed, inspired by the previously reported azobenzene-based photo-reaction method used for a renewable PID controller. It is shown that the methodology that timely switches the operation between “regulator mode” and “concentration recovery mode” by light irradiation can serve as a solution for the long-time operation of the DNA concentration regulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Asanuma, H., Ito, T., Yoshida, T., Liang, X., Komiyama, M.: Photoregulation of the formation and dissociation of a DNA duplex by using the cis-trans isomerization of azobenzene. Angew. Chem. Int. Ed. Engl. 38(16), 2393–2395 (1999)

    Article  Google Scholar 

  2. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable and autonomous computing machine made of biomolecules. Nature 414(6862), 430–4 (2001). https://doi.org/10.1038/35106533

    Article  Google Scholar 

  3. Condon, A., Hu, A.J., Maňuch, J., Thachuk, C.: Less haste, less waste: on recycling and its limits in strand displacement systems. Interface Focus 2(4), 512–21 (2012). https://doi.org/10.1098/rsfs.2011.0106

    Article  MATH  Google Scholar 

  4. Douglas, S.M., Bachelet, I., Church, G.M.: A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070), 831–4 (2012). https://doi.org/10.1126/science.1214081

    Article  Google Scholar 

  5. Lakin, M.R., Youssef, S., Cardelli, L., Phillips, A.: Abstractions for DNA circuit design. J. R. Soc. Interface 9(68), 470–86 (2012). https://doi.org/10.1098/rsif.2011.0343

    Article  Google Scholar 

  6. Lakin, M.R., Youssef, S., Polo, F., Emmott, S., Phillips, A.: Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27(22), 3211–3 (2011). https://doi.org/10.1093/bioinformatics/btr543

    Article  Google Scholar 

  7. Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molecular robots guided by prescriptive landscapes. Nature 465(7295), 206–10 (2010). https://doi.org/10.1038/nature09012

    Article  Google Scholar 

  8. Matsuda, K., Kabir, A.M.R., Akamatsu, N., Saito, A., Ishikawa, S., Matsuyama, T., Ditzer, O., Islam, M.S., Ohya, Y., Sada, K., Konagaya, A., Kuzuya, A., Kakugo, A.: Artificial smooth muscle model composed of hierarchically ordered microtubule asters mediated by DNA origami nanostructures. Nano Lett. 19(6), 3933–3938 (2019). https://doi.org/10.1021/acs.nanolett.9b01201

    Article  Google Scholar 

  9. Murata, S., Konagaya, A., Kobayashi, S., Saito, H., Hagiya, M.: Molecular robotics: a new paradigm for artifacts. N. Gener. Comput. 31(1), 27–45 (2013)

    Article  Google Scholar 

  10. Nakakuki, T.: A multifunctional controller realized by biochemical reactions. SICE J. Control Measur Syst. Integr. 8(2), 99–107 (2015). https://doi.org/10.9746/jcmsi.8.99

    Article  Google Scholar 

  11. Nakakuki, T., Imura, J.: Molecular governor: DNA feedback regulator for molecular robotics. SICE J. Cont. Meas. Syst. Int. 9(2), 60–69 (2016)

    Article  Google Scholar 

  12. Nakakuki, T., Imura, J.: Finite-time regulation property of DNA feedback regulator. Automatica 114 (2020)

  13. Oishi, K., Klavins, E.: Biomolecular implementation of linear i/o systems. IET Syst. Biol. 5(4), 252–260 (2011)

    Article  Google Scholar 

  14. Omabegho, T., Sha, R., Seeman, N.C.: A bipedal DNA brownian motor with coordinated legs. Science 324(5923), 67–71 (2009). https://doi.org/10.1126/science.1170336

    Article  Google Scholar 

  15. Paulino, N.M.G., Foo, M., Kim, J., Bates, D.G.: Id and state feedback controllers using DNA strand displacement reactions. IEEE Control Syst. Lett. 3(4), 805–810 (2019)

    Article  MathSciNet  Google Scholar 

  16. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–201 (2011). https://doi.org/10.1126/science.1200520

    Article  Google Scholar 

  17. Rong, P., Nakakuki, T.: Analysis of finite-time regulation property of biomolecular pi controller. Control Theory Technol. 18, 135–142 (2020)

    Article  MathSciNet  Google Scholar 

  18. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006). https://doi.org/10.1038/nature04586

    Article  Google Scholar 

  19. Sato, Y., Hiratsuka, Y., Kawamata, I., Murata, S., Nomura, S.I.M.: Micrometer-sized molecular robot changes its shape in response to signal molecules. Sci. Robot. 2(4) (2017). https://doi.org/10.1126/scirobotics.aal3735

  20. Sawlekar, R., Montefusco, F., Kulkarni, V.V., Bates, D.G.: Implementing nonlinear feedback controllers using DNA strand displacement reactions. IEEE Trans. Nanobiosci. 15(5), 443–454 (2016). https://doi.org/10.1109/TNB.2016.2560764

    Article  Google Scholar 

  21. Shinar, G., Feinberg, M.: Structural sources of robustness in biochemical reaction networks. Science 327(5971), 1389–91 (2010). https://doi.org/10.1126/science.1183372

    Article  Google Scholar 

  22. Song, X., Eshra, A., Dwyer, C., Reif, J.: Renewable DNA seesaw logic circuits enabled by photoregulation of toehold-mediated strand displacement. RSC Adv. 7, 28130–28144 (2017). https://doi.org/10.1039/C7RA02607B

    Article  Google Scholar 

  23. Stojanovic, M.N., Mitchell, T.E., Stefanovic, D.: Deoxyribozyme-based logic gates. J. Am. Chem. Soc. 124(14), 3555–61 (2002). https://doi.org/10.1021/ja016756v

    Article  Google Scholar 

  24. Tamba, M., Murayama, K., Asanuma, H., Nakakuki, T.: Renewable DNA proportional-integral controller with photoresponsive molecules. Micromachines 13(2) (2022)

  25. Tamba, M., Nakakuki, T.: Renewable implementation of rational biomolecular systems design. In: 2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), pp. 300–307 (2020). https://doi.org/10.23919/SICE48898.2020.9240329

  26. Tanaka, Y., Nakakuki, T., Nomura, S.M.: DNA integral controller learning from biological system. In: Proceeding of SICE Annual Conference (SICE2017), pp. 781–786 (2017)

  27. Wickham, S.F.J., Endo, M., Katsuda, Y., Hidaka, K., Bath, J., Sugiyama, H., Turberfield, A.J.: Direct observation of stepwise movement of a synthetic molecular transporter. Nat. Nanotechnol. 6(3), 166–9 (2011). https://doi.org/10.1038/nnano.2010.284

    Article  Google Scholar 

  28. Xiao, F., Doyle, J.C.: Robust perfect adaptation in biomolecular reaction networks. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 4345–4352 (2018). https://doi.org/10.1109/CDC.2018.8619101

  29. Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Programming biomolecular self-assembly pathways. Nature 451(7176), 318–22 (2008). https://doi.org/10.1038/nature06451

    Article  Google Scholar 

  30. Yordanov, B., Kim, J., Petersen, R.L., Shudy, A., Kulkarni, V.V., Phillips, A.: Computational design of nucleic acid feedback control circuits. ACS Synth. Biol. 3(8), 600–16 (2014). https://doi.org/10.1021/sb400169s

    Article  Google Scholar 

  31. Yordanov, B., Kim, J., Petersen, R.L., Shudy, A., Kulkarni, V.V., Phillips, A.: Computational design of nucleic acid feedback control circuits. ACS Synth. Biol. 8(600–616) (3)

  32. Yurke, B., Turberfield, A.J., Mills, A.P., Jr., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406(6796), 605–8 (2000). https://doi.org/10.1038/35020524

    Article  Google Scholar 

  33. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318(5853), 1121–5 (2007). https://doi.org/10.1126/science.1148532

    Article  Google Scholar 

  34. Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009)

    Article  Google Scholar 

  35. Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131(47), 17303–14 (2009). https://doi.org/10.1021/ja906987s

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate Mr. Minoru Akita (Kyushu Institute of Technology, graduated in March 2021) for discussing the design of the renewable DCR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Nakakuki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by JSPS KAKENHI Grant Numbers 20H05971 (T. N.), 20K04549 (T. N.), 20H05970 (K. M.), 20H05968 (K. M.), and JP21H05025 (H. A.).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakakuki, T., Murayama, K. & Asanuma, H. DNA Concentration Regulator That can be Driven for a Long Time. New Gener. Comput. 40, 681–702 (2022). https://doi.org/10.1007/s00354-022-00173-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-022-00173-3

Keywords

Navigation