Skip to main content
Log in

A Botnet Detection in IoT Using a Hybrid Multi-objective Optimization Algorithm

  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

The Internet of Things (IoT) is an emerging network that has experienced a lot of progress due to extensive developments and development in this network. Due to the increased number of IoT devices, it is endangered by a botnet-type attack. Many intrusion detection systems do not have the necessary and sufficient ability to detect and prevent such attacks. Intrusion detection systems (IDSs) have provided various promising solutions to discover malicious patterns and deal with botnet attacks. Many researchers have studied the effect of reducing the number of features of datasets on the detection performance of IoT attacks. Selecting several features from a dataset is a data mining technique effectively integrated into botnet detection and identification systems design. This paper presents a new botnet detection system to detect botnets in IoT using the feature selection technique based on the slime mold algorithm (SMA) and salp swarm algorithm (SSA). On the other hand, the number of features and the importance of features selected from the dataset can directly impact the detection error rate. Therefore, we have presented a new practical and efficient multi-objective algorithm for detecting botnets based on feature selection. To maximize the performance of the proposed algorithm, we have used chaos theory. In addition, we have integrated the mechanism of the Disruption operator with the proposed algorithm. An excellent balance is created in the components of exploration and exploitation. Finally, to check and evaluate the proposed algorithm, the standard datasets available in the UCI source, created based on the real traffic of infected devices on the IoT botnet, have been used. The results obtained from the proposed algorithm indicate a significant and good performance. The results show that it has a high ability to detect botnets in IoT networks and has been able to achieve an excellent low error rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee, S.-W., et al.: Towards secure intrusion detection systems using deep learning techniques: comprehensive analysis and review. J. Netw. Comput. Appl. 187, 103111 (2021)

    Article  Google Scholar 

  2. Naseri, T.S., Gharehchopogh, F.S.: A feature selection based on the farmland fertility algorithm for improved intrusion detection systems. J. Netw. Syst. Manag. 30(3), 1–27 (2022)

    Article  Google Scholar 

  3. Raza, S., Wallgren, L., Voigt, T.: SVELTE: real-time intrusion detection in the Internet of Things. Ad Hoc Netw. 11(8), 2661–2674 (2013)

    Article  Google Scholar 

  4. Popoola, S.I., et al.: Stacked recurrent neural network for botnet detection in smart homes. Comput. Electr. Eng. 92, 107039 (2021)

    Article  Google Scholar 

  5. Shafiq, M., et al.: Selection of effective machine learning algorithm and Bot-IoT attacks traffic identification for internet of things in smart city. Future Gener. Comput. Syst. 107, 433–442 (2020)

    Article  Google Scholar 

  6. Swarna Priya, R.M., et al.: An effective feature engineering for DNN using hybrid PCA-GWO for intrusion detection in IoMT architecture. Comput. Commun. 160, 139–149 (2020)

    Article  Google Scholar 

  7. Rizwan, M., et al.: Risk monitoring strategy for confidentiality of healthcare information. Comput. Electr. Eng. 100, 107833 (2022)

    Article  Google Scholar 

  8. Nadimi-Shahraki, M.H., et al.: B-MFO: a binary moth-flame optimization for feature selection from medical datasets. Computers 10(11), 136 (2021)

    Article  Google Scholar 

  9. Saha, A.K.: Multi-population-based adaptive sine cosine algorithm with modified mutualism strategy for global optimization. Knowl.-Based Syst. 251, 109326 (2022)

    Article  Google Scholar 

  10. Gharehchopogh, F.S., Maleki, I., Dizaji, Z.A.: Chaotic vortex search algorithm: metaheuristic algorithm for feature selection. Evol. Intell. 15, 1–32 (2021)

    Google Scholar 

  11. Sahoo, S.K., Saha, A.K.: A hybrid moth flame optimization algorithm for global optimization. J. Bionic. Eng. 50, 1–22 (2022)

    Google Scholar 

  12. Nadimi-Shahraki, M.H., et al.: GGWO: gaze cues learning-based grey wolf optimizer and its applications for solving engineering problems. J. Comput. Sci. 61, 101636 (2022)

    Article  Google Scholar 

  13. Zamani, H., Nadimi-Shahraki, M.H., Gandomi, A.H.: Starling murmuration optimizer: a novel bio-inspired algorithm for global and engineering optimization. Comput. Methods Appl. Mech. Eng. 392, 114616 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gharehchopogh, F.S.: An improved tunicate swarm algorithm with best-random mutation strategy for global optimization problems. J. Bionic Eng. 1–26 (2022)

  15. Abdollahzadeh, B., Soleimanian Gharehchopogh, F., Mirjalili, S.: Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Int. J. Intell. Syst. 36(10), 5887–5958 (2021)

    Article  Google Scholar 

  16. Chakraborty, S., et al.: An enhanced whale optimization algorithm for large scale optimization problems. Knowl.-Based Syst. 233, 107543 (2021)

    Article  Google Scholar 

  17. Banaie-Dezfouli, M., Nadimi-Shahraki, M.H., Beheshti, Z.: R-GWO: Representative-based grey wolf optimizer for solving engineering problems. Appl. Soft Comput. 106, 107328 (2021)

    Article  Google Scholar 

  18. Abdollahzadeh, B., Gharehchopogh, F.S., Mirjalili, S.: African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 158, 107408 (2021)

    Article  Google Scholar 

  19. Gharehchopogh, F.S., Abdollahzadeh, B.: An efficient harris hawk optimization algorithm for solving the travelling salesman problem. Clust. Comput. 25(3), 1981–2005 (2022)

    Article  Google Scholar 

  20. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  21. Samadi Bonab, M., et al.: A wrapper-based feature selection for improving performance of intrusion detection systems. Int. J. Commun Syst 33(12), e4434 (2020)

    Article  Google Scholar 

  22. Asghari, K., et al.: Multi-swarm and chaotic whale-particle swarm optimization algorithm with a selection method based on roulette wheel. Expert. Syst. 38(8), e12779 (2021)

    Article  Google Scholar 

  23. Li, S., et al.: Slime mould algorithm: a new method for stochastic optimization. Future Gener. Comput. Syst. 111, 300–323 (2020)

    Article  Google Scholar 

  24. Mirjalili, S., et al.: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Article  Google Scholar 

  25. Nadimi-Shahraki, M.H., et al.: Hybridizing of Whale and Moth-Flame Optimization Algorithms to solve diverse scales of optimal power flow problem. Electronics 11(5), 831 (2022)

    Article  Google Scholar 

  26. Zhu, Y., et al.: An improved NSGA-III algorithm for feature selection used in intrusion detection. Knowl.-Based Syst. 116, 74–85 (2017)

    Article  Google Scholar 

  27. Habib, M., et al.: Multi-objective particle swarm optimization for botnet detection in Internet of Things. In: Evolutionary Machine Learning Techniques, pp. 203–229. Springer, Berlin (2020)

    Chapter  Google Scholar 

  28. Habib, M., Aljarah, I., Faris, H.: A modified multi-objective Particle Swarm Optimizer-based Lévy flight: an approach toward intrusion detection in Internet of Things. Arab. J. Sci. Eng. 45(8), 6081–6108 (2020)

    Article  Google Scholar 

  29. Bezerra, V.H., et al.: One-class classification to detect botnets in IoT devices∗. In: Anais Principais do XVIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais. SBC (2018)

  30. Roopak, M., Tian, G.Y., Chambers, J.: Multi-objective-based feature selection for DDoS attack detection in IoT networks. IET Netw. 9(3), 120–127 (2020)

    Article  Google Scholar 

  31. Khan, M.A., Salah, K.: IoT security: review, blockchain solutions, and open challenges. Future Gener. Comput. Syst. 82, 395–411 (2018)

    Article  Google Scholar 

  32. Sanchez-Pi, N., Martí, L., Molina, J.M.: Applying voreal for iot intrusion detection. In: International Conference on Hybrid Artificial Intelligence Systems. Springer (2018)

  33. Li, J., et al.: AI-based two-stage intrusion detection for software defined iot networks. IEEE Int. Things J. 6(2), 2093–2102 (2018)

    Article  Google Scholar 

  34. Saleh, I.A., Kamal, M.A., Ibrahim, L.M.: Using Monkey Optimization Algorithm to detect NERIS botnet. J. Eng. Sci. Technol. 16(1), 152–164 (2021)

    Google Scholar 

  35. Téllez, N., et al.: A tabu search method for load balancing in fog computing. Int. J. Artif. Intell. 16(2), 1–30 (2018)

    Google Scholar 

  36. Li, S., et al.: An improved information security risk assessments method for cyber-physical-social computing and networking. IEEE Access 6, 10311–10319 (2018)

    Article  Google Scholar 

  37. Jagadeesan, S., Amutha, B.: An efficient botnet detection with the enhanced support vector neural network. Measurement 176, (2021)

  38. Al Shorman, A., Faris, H., Aljarah, I.: Unsupervised intelligent system based on one class support vector machine and Grey Wolf optimization for IoT botnet detection. J. Ambient Intell. Humaniz. Comput. 11(7), 2809–2825 (2020)

    Article  Google Scholar 

  39. Sreenivasamurthy, S., Obraczka, K.: Clustering for load balancing and energy efficiency in IoT applications. In: 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS). IEEE (2018)

  40. Rana, S., et al.: An effective lightweight cryptographic algorithm to secure resource-constrained devices. Int. J. Adv. Comput. Sci. Appl. 9(11), 1–9 (2018)

    Google Scholar 

  41. Xue, Y., et al.: An evolutionary computation based feature selection method for intrusion detection. Secur. Commun. Netw. 2018, 1–11 (2018)

    Article  Google Scholar 

  42. Bagui, S., Wang, X., Bagui, S.: Machine learning based intrusion detection for IoT botnet. Int. J. Mach. Learn. Comput. 11(6), 399–406 (2021)

    Article  Google Scholar 

  43. Chen, S.-C., Chen, Y.-R., Tzeng, W.-G.: Effective botnet detection through neural networks on convolutional features. In: 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). IEEE (2018)

  44. McDermott, C.D., Majdani, F., Petrovski, A.V.: Botnet detection in the internet of things using deep learning approaches. In: 2018 International Joint Conference on Neural Networks (IJCNN). IEEE (2018)

  45. Nguyen, H.-T., Ngo, Q.-D., Le, V.-H.: IoT botnet detection approach based on PSI graph and DGCNN classifier. In: 2018 IEEE International Conference on Information Communication and Signal Processing (ICICSP). IEEE (2018)

  46. Kesavamoorthy, R., Soundar, K.R.: Swarm intelligence based autonomous DDoS attack detection and defense using multi agent system. Clust. Comput. 22(4), 9469–9476 (2019)

    Article  Google Scholar 

  47. Selvarani, P., Suresh, A., Malarvizhi, N.: Secure and optimal authentication framework for cloud management using HGAPSO algorithm. Clust. Comput. 22(2), 4007–4016 (2019)

    Article  Google Scholar 

  48. Suman, C., Tripathy, S., Saha, S.: Building an effective intrusion detection system using unsupervised feature selection in multi-objective optimization framework. arXiv preprint http://arxiv.org/abs/1905.06562 (2019)

  49. Al-Kasassbeh, M., et al.: Detection of IoT-botnet attacks using fuzzy rule interpolation. J. Intell. Fuzzy Syst. 1–11 (Preprint)

  50. Li, S., et al.: Slime mould algorithm: a new method for stochastic optimization. Future Gener. Comput. Syst. (2020)

  51. Deb, K.: Multi-objective Optimisation Using Evolutionary Algorithms: An Introduction, Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, 3–18 (2001)

  52. Mohammadzadeh, A., Masdari, M., Gharehchopogh, F.S.: Energy and cost-aware workflow scheduling in cloud computing data centers using a multi-objective optimization algorithm. J. Netw. Syst. Manag. 29(3), 1–34 (2021)

    Article  Google Scholar 

  53. Mohammadzadeh, H., Gharehchopogh, F.S.: Feature selection with binary symbiotic organisms search algorithm for email spam detection. Int. J. Inf. Technol. Decis. Mak. 20(01), 469–515 (2021)

    Article  Google Scholar 

  54. Neggaz, N., et al.: Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection. Expert Syst. Appl. 145, 113103 (2020)

    Article  Google Scholar 

  55. Gandomi, A.H., Yang, X.-S.: Chaotic bat algorithm. J. Comput. Sci. 5(2), 224–232 (2014)

    Article  MathSciNet  Google Scholar 

  56. Tavazoei, M.S., Haeri, M.: An optimization algorithm based on chaotic behavior and fractal nature. J. Comput. Appl. Math. 206(2), 1070–1081 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wang, G.-G., et al.: Chaotic krill herd algorithm. Inf. Sci. 274, 17–34 (2014)

    Article  MathSciNet  Google Scholar 

  58. Sayed, G.I., Khoriba, G., Haggag, M.H.: A novel chaotic salp swarm algorithm for global optimization and feature selection. Appl. Intell. 48(10), 3462–3481 (2018)

    Article  Google Scholar 

  59. Zhao, J., Gao, Z.M.: The chaotic slime mould algorithm with Chebyshev map. J. Phys. Conf. Ser. 1631, 1–6 (2020)

    Article  Google Scholar 

  60. Geisel, T., Fairen, V.: Statistical properties of chaos in Chebyshev maps. Phys. Lett. A 105(6), 263–266 (1984)

    Article  MathSciNet  Google Scholar 

  61. Li, Y., Deng, S., Xiao, D.: A novel Hash algorithm construction based on chaotic neural network. Neural Comput. Appl. 20(1), 133–141 (2011)

    Article  Google Scholar 

  62. Ghafori, S., Gharehchopogh, F.S.: Advances in spotted hyena optimizer: a comprehensive survey. Arch. Comput. Methods Eng. 1–22 (2021)

  63. Gharehchopogh, F.S., Shayanfar, H., Gholizadeh, H.: A comprehensive survey on symbiotic organisms search algorithms. Artif. Intell. Rev. 53(3), 2265–2312 (2020)

    Article  Google Scholar 

  64. Gharehchopogh, F.S., Gholizadeh, H.: A comprehensive survey: Whale Optimization Algorithm and its applications. Swarm Evol. Comput. 48, 1–24 (2019)

    Article  Google Scholar 

  65. Asuncion, A., Newman, D.: UCI Machine Learning Repository (2007)

  66. Xue, B., Zhang, M., Browne, W.N.: Particle swarm optimization for feature selection in classification: a multi-objective approach. IEEE Trans. Cybern. 43(6), 1656–1671 (2012)

    Article  Google Scholar 

  67. Hancer, E., et al.: Pareto front feature selection based on artificial bee colony optimization. Inf. Sci. 422, 462–479 (2018)

    Article  Google Scholar 

  68. Abdollahzadeh, B., Gharehchopogh, F.S.: A multi-objective optimization algorithm for feature selection problems. Eng. Comput. 64, 508–520 (2021)

    Google Scholar 

  69. Hamdani, T.M., et al.: Multi-objective feature selection with NSGA II. In: International Conference on Adaptive and Natural Computing Algorithms. Springer (2007)

  70. Ghosh, A.K.: On optimum choice of K in nearest neighbor classification. Comput. Stat. Data Anal. 50(11), 3113–3123 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  71. Chuang, L.-Y., et al.: A hybrid feature selection method for DNA microarray data. Comput. Biol. Med. 41(4), 228–237 (2011)

    Article  Google Scholar 

  72. Knowles, J., Corne, D.: On metrics for comparing nondominated sets. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600). IEEE (2002)

  73. Wang, X.-H., et al.: Multi-objective feature selection based on artificial bee colony: an acceleration approach with variable sample size. Appl. Soft Comput. 88, 106041 (2020)

    Article  Google Scholar 

  74. Pan, A., et al.: A diversity enhanced multiobjective particle swarm optimization. Inf. Sci. 436, 441–465 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  75. Lin, Q., et al.: Adaptive composite operator selection and parameter control for multiobjective evolutionary algorithm. Inf. Sci. 339, 332–352 (2016)

    Article  Google Scholar 

  76. Cheraghchi, F., et al.: Modeling the speed-based vessel schedule recovery problem using evolutionary multiobjective optimization. Inf. Sci. 448, 53–74 (2018)

    Article  MathSciNet  Google Scholar 

  77. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier, Amsterdam (2011)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Soleimanian Gharehchopogh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, F., Gharehchopogh, F.S. & Masdari, M. A Botnet Detection in IoT Using a Hybrid Multi-objective Optimization Algorithm. New Gener. Comput. 40, 809–843 (2022). https://doi.org/10.1007/s00354-022-00188-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-022-00188-w

Keywords

Navigation