Abstract
In this study, we propose two hybrid algorithms for link prediction problem in static networks that combine the benefits of both local and global scoring methods, with the objective of compensating the weaknesses of each approach using two strategies: sequential and integrated. In the sequential strategy global scoring methods are used in a pipeline mode after local ones if the full graph is explored and the desired number of edges is not met, in an attempt to complete the missing links in the network. The integrated one combines local and global scoring algorithms together in order to add a missing link to the network. Furthermore, we present four distinct approaches to explore the network’s nodes and edges. Experiments on real-world and synthetic networks revealed that our proposed hybrid algorithms can outperform some of the state-of-the-art link-prediction methods.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25, 211–230 (2003)
Al Hasan, M., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: SDM06: Workshop on Link Analysis, Counter-Terrorism and Security, Vol. 30, pp. 798–805 (2006)
Aziz, F., Gul, H., Muhammad, I., Uddin, I.: Link prediction using node information on local paths. Phys. A 557, 124980 (2020)
Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)
Batagelj, V., Mrvar, A.: Pajek datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/mix.USAir97.net (2006)
Bliss, C.A., Frank, M.R., Danforth, C.M., Dodds, P.S.: An evolutionary algorithm approach to link prediction in dynamic social networks. J. Comput. Sci. 5, 750–764 (2014)
Chen, H., Li, X., Huang, Z.: Link prediction approach to collaborative filtering. In: Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL’05), pp. 141–142. IEEE (2005)
Cohen, E., Delling, D., Pajor, T., Werneck, R.F.: Computing classic closeness centrality, at scale. In: Proceedings of the Second ACM Conference on Online Social Networks COSN ’14, pp. 37-50. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2660460.2660465 (2014)
Daud, N.N., Ab Hamid, S.H., Saadoon, M., Sahran, F., Anuar, N.B.: Applications of link prediction in social networks: a review. J. Netw. Comput. Appl. p. 102716 (2020)
Erciyes, K.: Complex Networks: An Algorithmic Perspective, 1st edn. CRC Press Inc., Boca Raton (2014)
Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.-F., Van den Broeck, W.: What’s in a crowd? analysis of face-to-face behavioral networks. J. Theor. Biol. 271, 166–180 (2011)
Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura. Bull. Soc. Vaudoise Sci. Nat. 37, 547–579 (1901)
Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18, 39–43 (1953)
Kerkache, M.H., Sadeg-Belkacem, L., Benbouzid-Si Tayeb, F., Ali, A.: Supervised learning using community detection for link prediction. In: Senouci, M.R., Boulahia, S.Y., Benatia, M.A. (eds.) Advances in Computing Systems and Applications, pp. 85–94. Springer International Publishing, Cham (2022)
Kim, M., Leskovec, J.: The network completion problem: Inferring missing nodes and edges in networks. In: tProceedings of the 2011 SIAM International Conference on Data Mining, pp. 47–58. SIAM (2011)
Jérôme Kunegis. KONECT – The Koblenz Network Collection. In: Proceedings of the International Conference on World Wide Web Companion, pp. 1343–1350 (2013). http://konect.cc/networks/dimacs10-polbooks/
Kumar, A., Singh, S.S., Singh, K., Biswas, B.: Link prediction techniques, applications, and performance: a survey. Phys. A Stat. Mech. Appl. 553, 124289 (2020). https://doi.org/10.1016/j.physa.2020.124289
Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58, 1019–1031 (2007)
Lim, M., Abdullah, A., Jhanjhi, N., Supramaniam, M.: Hidden link prediction in criminal networks using the deep reinforcement learning technique. Computers 8, 8 (2019)
Liu, Z., Zhang, Q.-M., Lü, L., Zhou, T.: Link prediction in complex networks: a local naïve bayes model. CoRR, arXiv:1105.4005. https://doi.org/10.1209/0295-5075/96/48007 (2011)
Lu, Y., Guo, Y., Korhonen, A.: Link prediction in drug-target interactions network using similarity indices. BMC Bioinform. (2017). https://doi.org/10.1186/s12859-017-1460-z
Ma, H., Lu, Z., Li, D., Zhu, Y., Fan, L., Wu, W.: Mining hidden links in social networks to achieve equilibrium. Theor. Comput. Sci. 556, 13–24 (2014). https://doi.org/10.1016/j.tcs.2014.08.006. (combinatorial optimization and applications)
Martínez, V., Cano, C., Blanco, A.: Prophnet: a generic prioritization method through propagation of information. BMC Bioinform. 15, 1–13 (2014)
Martínez, V., Galiano, F.B., Cubero, J.C.: A survey of link prediction in complex networks. ACM Comput. Surv. 49, 69:1-69:33 (2016)
Navarro, E.: Métrologie des graphes de terrain, application à la construction de ressources lexicales et à la recherche d’information. Ph.D. thesis Institut National Polytechnique de Toulouse-INPT (2013)
Newman, M.E.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64, 025102 (2001)
Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006). https://doi.org/10.1103/PhysRevE.74.036104
Oliveira, M., Gama, J.: An overview of social network analysis. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2, 99–115 (2012)
Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the web.. Technical report Stanford InfoLab (1999)
Rossi, R., Ahmed, N.: The network data repository with interactive graph analytics and visualization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29 (2015)
Singh, S. S., Mishra, S., Kumar, A., Biswas, B.: Link Prediction on Social Networks Based on Centrality Measures. Principles of Social Networking: The New Horizon and Emerging Challenges, 71–89 (2022)
Srilatha, P., Manjula, R.: Structural similarity based link prediction in social networks using firefly algorithm. In: 2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon), pp. 560–564. IEEE (2017)
Tong, H., Faloutsos, C., Pan, J.-Y.: Fast random walk with restart and its applications. In: Sixth International Conference on Data Mining (ICDM’06), pp. 613–622. IEEE (2006)
Wang, L., Chen, C., Li, H.: Link prediction of complex network based on eigenvector centrality. J. Phys. Conf. Ser. 2337, 012018 (2022)
Wang, P., Xu, B., Wu, Y., Zhou, X.: Link prediction in social networks: the state-of-the-art. Sci. China Inf. Sci. 58, 1–38 (2014)
Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440 (1998)
Xu, J., Chen, H.: The topology of dark networks. Commun. ACM 51, 58–65 (2008). https://doi.org/10.1145/1400181.1400198
Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977). https://doi.org/10.1086/jar.33.4.3629752
Zeng, S.: Link prediction based on local information considering preferential attachment. Phys. A 443, 537–542 (2016)
Zhou, T., Lü, L., Zhang, Y.-C.: Predicting missing links via local information. Eur. Phys. J. B 71, 623–630 (2009)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
About this article
Cite this article
Kerkache, H.M., Sadeg-Belkacem, L. & Tayeb, F.BS. Similarity-Based Hybrid Algorithms for Link Prediction Problem in Social Networks. New Gener. Comput. 41, 281–314 (2023). https://doi.org/10.1007/s00354-023-00208-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00354-023-00208-3