Skip to main content
Log in

Similarity-Based Hybrid Algorithms for Link Prediction Problem in Social Networks

  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

In this study, we propose two hybrid algorithms for link prediction problem in static networks that combine the benefits of both local and global scoring methods, with the objective of compensating the weaknesses of each approach using two strategies: sequential and integrated. In the sequential strategy global scoring methods are used in a pipeline mode after local ones if the full graph is explored and the desired number of edges is not met, in an attempt to complete the missing links in the network. The integrated one combines local and global scoring algorithms together in order to add a missing link to the network. Furthermore, we present four distinct approaches to explore the network’s nodes and edges. Experiments on real-world and synthetic networks revealed that our proposed hybrid algorithms can outperform some of the state-of-the-art link-prediction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25, 211–230 (2003)

    Article  Google Scholar 

  2. Al Hasan, M., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: SDM06: Workshop on Link Analysis, Counter-Terrorism and Security, Vol. 30, pp. 798–805 (2006)

  3. Aziz, F., Gul, H., Muhammad, I., Uddin, I.: Link prediction using node information on local paths. Phys. A 557, 124980 (2020)

    Article  Google Scholar 

  4. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Batagelj, V., Mrvar, A.: Pajek datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/mix.USAir97.net (2006)

  6. Bliss, C.A., Frank, M.R., Danforth, C.M., Dodds, P.S.: An evolutionary algorithm approach to link prediction in dynamic social networks. J. Comput. Sci. 5, 750–764 (2014)

    Article  MathSciNet  Google Scholar 

  7. Chen, H., Li, X., Huang, Z.: Link prediction approach to collaborative filtering. In: Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL’05), pp. 141–142. IEEE (2005)

  8. Cohen, E., Delling, D., Pajor, T., Werneck, R.F.: Computing classic closeness centrality, at scale. In: Proceedings of the Second ACM Conference on Online Social Networks COSN ’14, pp. 37-50. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2660460.2660465 (2014)

  9. Daud, N.N., Ab Hamid, S.H., Saadoon, M., Sahran, F., Anuar, N.B.: Applications of link prediction in social networks: a review. J. Netw. Comput. Appl. p. 102716 (2020)

  10. Erciyes, K.: Complex Networks: An Algorithmic Perspective, 1st edn. CRC Press Inc., Boca Raton (2014)

    Book  MATH  Google Scholar 

  11. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.-F., Van den Broeck, W.: What’s in a crowd? analysis of face-to-face behavioral networks. J. Theor. Biol. 271, 166–180 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura. Bull. Soc. Vaudoise Sci. Nat. 37, 547–579 (1901)

    Google Scholar 

  13. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18, 39–43 (1953)

    Article  MATH  Google Scholar 

  14. Kerkache, M.H., Sadeg-Belkacem, L., Benbouzid-Si Tayeb, F., Ali, A.: Supervised learning using community detection for link prediction. In: Senouci, M.R., Boulahia, S.Y., Benatia, M.A. (eds.) Advances in Computing Systems and Applications, pp. 85–94. Springer International Publishing, Cham (2022)

    Chapter  Google Scholar 

  15. Kim, M., Leskovec, J.: The network completion problem: Inferring missing nodes and edges in networks. In: tProceedings of the 2011 SIAM International Conference on Data Mining, pp. 47–58. SIAM (2011)

  16. Jérôme Kunegis. KONECT – The Koblenz Network Collection. In: Proceedings of the International Conference on World Wide Web Companion, pp. 1343–1350 (2013). http://konect.cc/networks/dimacs10-polbooks/

  17. Kumar, A., Singh, S.S., Singh, K., Biswas, B.: Link prediction techniques, applications, and performance: a survey. Phys. A Stat. Mech. Appl. 553, 124289 (2020). https://doi.org/10.1016/j.physa.2020.124289

    Article  MathSciNet  MATH  Google Scholar 

  18. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58, 1019–1031 (2007)

    Article  Google Scholar 

  19. Lim, M., Abdullah, A., Jhanjhi, N., Supramaniam, M.: Hidden link prediction in criminal networks using the deep reinforcement learning technique. Computers 8, 8 (2019)

    Article  Google Scholar 

  20. Liu, Z., Zhang, Q.-M., Lü, L., Zhou, T.: Link prediction in complex networks: a local naïve bayes model. CoRR, arXiv:1105.4005. https://doi.org/10.1209/0295-5075/96/48007 (2011)

  21. Lu, Y., Guo, Y., Korhonen, A.: Link prediction in drug-target interactions network using similarity indices. BMC Bioinform. (2017). https://doi.org/10.1186/s12859-017-1460-z

    Article  Google Scholar 

  22. Ma, H., Lu, Z., Li, D., Zhu, Y., Fan, L., Wu, W.: Mining hidden links in social networks to achieve equilibrium. Theor. Comput. Sci. 556, 13–24 (2014). https://doi.org/10.1016/j.tcs.2014.08.006. (combinatorial optimization and applications)

    Article  MathSciNet  MATH  Google Scholar 

  23. Martínez, V., Cano, C., Blanco, A.: Prophnet: a generic prioritization method through propagation of information. BMC Bioinform. 15, 1–13 (2014)

    Article  Google Scholar 

  24. Martínez, V., Galiano, F.B., Cubero, J.C.: A survey of link prediction in complex networks. ACM Comput. Surv. 49, 69:1-69:33 (2016)

    Google Scholar 

  25. Navarro, E.: Métrologie des graphes de terrain, application à la construction de ressources lexicales et à la recherche d’information. Ph.D. thesis Institut National Polytechnique de Toulouse-INPT (2013)

  26. Newman, M.E.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64, 025102 (2001)

    Article  Google Scholar 

  27. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006). https://doi.org/10.1103/PhysRevE.74.036104

    Article  MathSciNet  Google Scholar 

  28. Oliveira, M., Gama, J.: An overview of social network analysis. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2, 99–115 (2012)

    Article  Google Scholar 

  29. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the web.. Technical report Stanford InfoLab (1999)

  30. Rossi, R., Ahmed, N.: The network data repository with interactive graph analytics and visualization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29 (2015)

  31. Singh, S. S., Mishra, S., Kumar, A., Biswas, B.: Link Prediction on Social Networks Based on Centrality Measures. Principles of Social Networking: The New Horizon and Emerging Challenges, 71–89 (2022)

  32. Srilatha, P., Manjula, R.: Structural similarity based link prediction in social networks using firefly algorithm. In: 2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon), pp. 560–564. IEEE (2017)

  33. Tong, H., Faloutsos, C., Pan, J.-Y.: Fast random walk with restart and its applications. In: Sixth International Conference on Data Mining (ICDM’06), pp. 613–622. IEEE (2006)

  34. Wang, L., Chen, C., Li, H.: Link prediction of complex network based on eigenvector centrality. J. Phys. Conf. Ser. 2337, 012018 (2022)

    Article  Google Scholar 

  35. Wang, P., Xu, B., Wu, Y., Zhou, X.: Link prediction in social networks: the state-of-the-art. Sci. China Inf. Sci. 58, 1–38 (2014)

    Google Scholar 

  36. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440 (1998)

    Article  MATH  Google Scholar 

  37. Xu, J., Chen, H.: The topology of dark networks. Commun. ACM 51, 58–65 (2008). https://doi.org/10.1145/1400181.1400198

    Article  Google Scholar 

  38. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977). https://doi.org/10.1086/jar.33.4.3629752

    Article  Google Scholar 

  39. Zeng, S.: Link prediction based on local information considering preferential attachment. Phys. A 443, 537–542 (2016)

    Article  Google Scholar 

  40. Zhou, T., Lü, L., Zhang, Y.-C.: Predicting missing links via local information. Eur. Phys. J. B 71, 623–630 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassen Mohamed Kerkache.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerkache, H.M., Sadeg-Belkacem, L. & Tayeb, F.BS. Similarity-Based Hybrid Algorithms for Link Prediction Problem in Social Networks. New Gener. Comput. 41, 281–314 (2023). https://doi.org/10.1007/s00354-023-00208-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-023-00208-3

Keywords

Navigation