Skip to main content
Log in

A CNN Transfer Learning-Based Automated Diagnosis of COVID-19 From Lung Computerized Tomography Scan Slices

  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

Lung abnormality is becoming the most widespread illness in individuals of the entire age group. This ailment can occur because of several causes. Recently, the novel disease, widely known as COVID-19, originated from the severe acute respiratory syndrome coronavirus-2, that can be stated as an outbreak by the World Health Organization. Detecting COVID-19 in its early stage becomes crucial for suppressing the epidemic it has triggered. In this proposed work, a CNN-based transfer learning approach for the screening of the outbreak of COVID-19. The central principle of this approach is to develop a computerized framework to help medical organizations, mainly in regions where fewer skilled employees are available. The proposed work explores the potential of pre-trained model architectures for the automatic identification of COVID-19 infection from lung CT images. First, in the data preparation, discrete wavelet transform is applied for three-level image decomposition, and then wavelet-based denoising is implemented on the training data sample using the VisuShrink algorithm. Second, data augmentation is done by applying zoom, change in brightness, height-width shifting, shearing, and rotation operations. Thirdly, the work is implemented by implementing the fine-tuned modified MobileNetV2 model in which 80% of CT images have been preferred for model training purpose, and 20% of images are selected for validation purposes. The overall performance of the pre-trained models is estimated by calculating several parametric outcomes. The outcome of the investigational analysis proves that the MobileNetV2 pre-trained CNN model obtained improved classification outcomes with 93.59% accuracy, 100% sensitivity, 87.25% specificity, 88.59% precision, 93.95% F1-score, 100% NPV, and AUC of 93.62%. In addition, the comparison of various CNN models such as Xception, NASNetLarge, NASNetMobile, DenseNet121, DenseNet169, DenseNet201, InceptionV3, and InceptionResNetV2 have been considered for experimentation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4:
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data

Data are available in the repositories follows as (“https://github.com/UCSD-AI4H/COVID-CT”) and can be accessed via a DOI link.

References

  1. Goldman Lee, Schafer Andrew.: Approach to the Patient with Respiratory Disease. In: 25th ed. Elsevier (2015)

  2. Stuart, R., Ian, P., Mark, S., Richard, H.: Davidson’s Principles and Practice of Medicine, 23rd edn. Elsevier (2018)

    Google Scholar 

  3. WebMD.: (2020) (2020). https://www.webmd.com/lung/lung-diseases-overview. Accessed 25 Jun 2021

  4. Association AL.: (2020) (2020). https://www.lung.org/lung-health-diseases/lung-disease-lookup. Accessed 25 Jun 2021

  5. WHO.: (2020) (2020). https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it. Accessed 25 Jun 2020

  6. Bhagavathula, A.S., Aldhaleei, W.A., Jamal, R., et al.: Knowledge and perceptions of COVID-19 among health care workers: cross-sectional study. JMIR Public Heal. Surveill. (2020). https://doi.org/10.2196/19160

    Article  Google Scholar 

  7. WORLDOMETER.: (2020) COVID-19 Coronavirus Pandemic (2020). In: WHO. https://www.worldometers.info/coronavirus/. Accessed 29 Jan 2021

  8. Radiopaedia.: (2020) (2020). https://radiopaedia.org/articles/covid-19-4?lang=us. Accessed 25 Jun 2020

  9. Albahri, O.S., Al-Obaidi, J.R., Zaidan, A.A., et al.: Helping doctors hasten COVID-19 treatment: Towards a rescue framework for the transfusion of best convalescent plasma to the most critical patients based on biological requirements via ml and novel MCDM methods. Comput. Methods Programs Biomed. 196, 105617 (2020). https://doi.org/10.1016/j.cmpb.2020.105617

    Article  Google Scholar 

  10. Albahri, A.S., Al-Obaidi, J.R., Zaidan, A.A., et al.: Multi-biological laboratory examination framework for the prioritization of patients with COVID-19 based on integrated AHP and group VIKOR methods. Int. J. Inf. Technol. Decis. Mak. 19, 1247–1269 (2020). https://doi.org/10.1142/S0219622020500285

    Article  Google Scholar 

  11. Tahamtan, A., Ardebili, A.: Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Rev. Mol. Diagn. 20, 453–454 (2020). https://doi.org/10.1080/14737159.2020.1757437

    Article  Google Scholar 

  12. Ai, T., Yang, Z., Hou, H., et al.: Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology 296, 1–8 (2020). https://doi.org/10.1148/radiol.2020200642

    Article  Google Scholar 

  13. Singh, D., Kumar, V., Vaishali, K.M.: Classification of COVID-19 patients from chest CT images using multi-objective differential evolution–based convolutional neural networks. Eur. J. Clin. Microbiol. Infect. Dis. 39, 1379–1389 (2020). https://doi.org/10.1007/s10096-020-03901-z

    Article  Google Scholar 

  14. Ye, Z., Zhang, Y., Wang, Y., et al.: Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur. Radiol. 30, 4381–4389 (2020). https://doi.org/10.1007/s00330-020-06801-0

    Article  Google Scholar 

  15. Fong, S.J., Li, G., Dey, N., et al.: Composite Monte Carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction. Appl. Soft Comput. J. 93, 106282 (2020). https://doi.org/10.1016/j.asoc.2020.106282

    Article  Google Scholar 

  16. Fong, S.J., Li, G., Dey, N., et al.: Finding an accurate early forecasting model from small dataset: a case of 2019-nCoV novel coronavirus outbreak. Int. J. Interact. Multimed. Artif. Intell. 6, 132 (2020). https://doi.org/10.9781/ijimai.2020.02.002

    Article  Google Scholar 

  17. Akram, T., Attique, M., Gul, S., et al.: A novel framework for rapid diagnosis of COVID-19 on computed tomography scans. Pattern Anal. Appl. 24, 951–964 (2021). https://doi.org/10.1007/s10044-020-00950-0

    Article  Google Scholar 

  18. Amyar, A., Modzelewski, R., Li, H., Ruan, S.: Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: classification and segmentation. Comput. Biol. Med. 126, 104037 (2020). https://doi.org/10.1016/j.compbiomed.2020.104037

    Article  Google Scholar 

  19. Shah, V., Keniya, R., Shridharani, A., et al.: Diagnosis of COVID-19 using CT scan images and deep learning techniques. Emerg. Radiol. 28, 497–505 (2021). https://doi.org/10.1007/s10140-020-01886-y

    Article  Google Scholar 

  20. Singh, K.K., Singh, A.: Diagnosis of COVID-19 from chest X-ray images using wavelets-based depthwise convolution network. Big Data Min. Anal. 4, 84–93 (2021). https://doi.org/10.26599/BDMA.2020.9020012

    Article  Google Scholar 

  21. Ahamed, K.U., Islam, M., Uddin, A., et al.: A deep learning approach using effective preprocessing techniques to detect COVID-19 from chest CT-scan and X-ray images. Comput. Biol. Med. 139, 105014 (2021). https://doi.org/10.1016/j.compbiomed.2021.105014

    Article  Google Scholar 

  22. Serte, S., Demirel, H.: Deep learning for diagnosis of COVID-19 using 3D CT scans. Comput. Biol. Med. 132, 104306 (2021). https://doi.org/10.1016/j.compbiomed.2021.104306

    Article  Google Scholar 

  23. Hammad, M., Tawalbeh, L., Iliyasu, A.M., et al.: Efficient multimodal deep-learning-based COVID-19 diagnostic system for noisy and corrupted images. J. King Saud. Univ. Sci. 34, 101898 (2022). https://doi.org/10.1016/j.jksus.2022.101898

    Article  Google Scholar 

  24. Zouch, W., Sagga, D., Echtioui, A., et al.: Detection of COVID-19 from CT and chest X-ray images using deep learning models. Ann. Biomed. Eng. 50, 825–835 (2022). https://doi.org/10.1007/s10439-022-02958-5

    Article  Google Scholar 

  25. Attallah, O., Samir, A.: A wavelet-based deep learning pipeline for efficient COVID-19 diagnosis via CT slices. Appl. Soft Comput. 128, 109401 (2022). https://doi.org/10.1016/j.asoc.2022.109401

    Article  Google Scholar 

  26. Choudhary, T., Gujar, S., Goswami, A., et al.: Deep learning-based important weights-only transfer learning approach for COVID-19 CT-scan classification. Appl. Intell. 53, 7201–7215 (2023). https://doi.org/10.1007/s10489-022-03893-7

    Article  Google Scholar 

  27. Soundrapandiyan, R., Naidu, H., Karuppiah, M., et al.: AI-based wavelet and stacked deep learning architecture for detecting coronavirus (COVID-19) from chest X-ray images. Comput. Electr. Eng. 108, 108711 (2023). https://doi.org/10.1016/j.compeleceng.2023.108711

    Article  Google Scholar 

  28. Wu, Y., Dai, Q., Lu, H.: COVID-19 diagnosis utilizing wavelet-based contrastive learning with chest CT images. Chemom. Intell. Lab. Syst. 236, 104799 (2023). https://doi.org/10.1016/j.chemolab.2023.104799

    Article  Google Scholar 

  29. Greenspan, H., Van Ginneken, B., Summers, R.M.: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35, 1153–1159 (2016). https://doi.org/10.1109/TMI.2016.2553401

    Article  Google Scholar 

  30. Albahri, O.S., Zaidan, A.A., Albahri, A.S., et al.: Systematic review of artificial intelligence techniques in the detection and classification of COVID-19 medical images in terms of evaluation and benchmarking: taxonomy analysis, challenges, future solutions and methodological aspects. J. Infect. Public Health 13, 1381–1396 (2020). https://doi.org/10.1016/j.jiph.2020.06.028

    Article  Google Scholar 

  31. Li, X., Zeng, X., Liu, B., Yu, Y.: COVID-19 infection presenting with CT Halo Sign. Radiol. Cardiothorac. Imaging 2, e200026 (2020). https://doi.org/10.1148/ryct.2020200026

    Article  Google Scholar 

  32. Das, D., Santosh, K.C., Pal, U.: Truncated inception net: COVID-19 outbreak screening using chest X-rays. Phys. Eng. Sci. Med. 43, 915–925 (2020). https://doi.org/10.1007/s13246-020-00888-x

    Article  Google Scholar 

  33. Cohen, J.P.: Covid-19 image data collection. (2020). https://github.com/ieee8023/covid-chestxray-dataset

  34. Mooney, P.: Chest x-ray images (pneumonia) dataset. (2020). https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia. Accessed 25 Jun 2020

  35. Antani, S.: Tuberculosis chest x-ray image data sets. (2020) https://ceb.nlm.nih.gov/tuberculosis-chest-x-ray-image-data-sets/. Accessed 25 Jun 2020

  36. Ozturk, T., Talo, M., Yildirim, E.A., et al.: Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. (2020). https://doi.org/10.1016/j.compbiomed.2020.103792

    Article  Google Scholar 

  37. Khalifa, N.E.M., Taha, M.H.N., Hassanien, A.E., Elghamrawy, S.: Detection of coronavirus (COVID-19) Associated pneumonia based on generative adversarial networks and a fine-tuned deep transfer learning model using chest X-ray dataset. 1–15 (2020)

  38. Irvin, J., Rajpurkar, P., Ko, M., et al.: CheXpert: A large chest radiograph dataset with uncertainty labels and expert comparison. 33rd AAAI Conf Artif Intell AAAI 2019, 31st Innov Appl Artif Intell Conf IAAI 2019 9th AAAI Symp Educ Adv Artif Intell EAAI 2019, 590–597 (2019). https://doi.org/10.1609/aaai.v33i01.3301590

  39. Oakden-Rayner, L.: Chexnet: an in-depth review. https://lukeoakdenrayner.wordpress.com/2018/01/24/chexnet-an-in-depth-review/. Accessed 25 Jun 2020 (2020)

  40. Ilyas, M., Rehman, H., Nait-ali, A.: Detection of Covid-19 from chest X-ray images using artificial intelligence: an early review. 1–8 (2020)

  41. Yang, X., He, X., Zhao, J., et al.: COVID-CT-dataset: a CT scan dataset about COVID-19. 1–14 (2020)

  42. Minaee, S., Kafieh, R., Sonka, M., et al.: Deep-COVID: predicting COVID-19 from chest X-ray images using deep transfer learning. Med. Image Anal. 65, 1–9 (2020). https://doi.org/10.1016/j.media.2020.101794

    Article  Google Scholar 

  43. Cohen, J.P., Morrison, P., Dao, L.: COVID-19 Image Data Collection (2020)

  44. Mobiny, A., Cicalese, P.A., Zare, S., et al.: Radiologist-level COVID-19 detection using CT scans with detail-oriented capsule networks (2020)

  45. Pathak, Y., Shukla, P.K., Tiwari, A., et al.: Deep transfer learning based classification model for COVID-19 disease. Irbm 1, 1–6 (2020). https://doi.org/10.1016/j.irbm.2020.05.003

    Article  Google Scholar 

  46. Chowdhury, M.E.H., Rahman, T., Khandakar, A., et al.: Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 8, 132665–132676 (2020). https://doi.org/10.1109/ACCESS.2020.3010287

    Article  Google Scholar 

  47. Hall, L.O., Paul, R., Goldgof, D.B., Goldgof, G.M.: Finding Covid-19 from chest X-rays using deep learning on a small dataset. 1–8 (2020)

  48. Mangal, A., Kalia, S., Rajgopal, H., et al.: CovidAID: COVID-19 detection using chest X-ray. 1–10 (2020)

  49. Tang, Z., Zhao, W., Xie, X., et al.: Severity assessment of coronavirus disease 2019 (COVID-19) using quantitative features from chest CT images. 2019, 1–18 (2020)

  50. Xu, X., Jiang, X., Ma, C., et al.: A deep learning system to screen novel coronavirus disease 2019 pneumonia. Engineering 6, 1122–1129 (2020). https://doi.org/10.1016/j.eng.2020.04.010

    Article  Google Scholar 

  51. Luz, E., Silva, P., Silva, R., et al.: Towards an effective and efficient deep learning model for COVID-19 patterns detection in X-ray images. Res. Biomed. Eng. (2021). https://doi.org/10.1007/s42600-021-00151-6

    Article  Google Scholar 

  52. Wang, L., Lin, Z.Q., Wong, A.: COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci. Rep. 10, 1–12 (2020). https://doi.org/10.1038/s41598-020-76550-z

    Article  Google Scholar 

  53. Wu, Y.H., Gao, S.H., Mei, J., et al.: JCS: an explainable COVID-19 diagnosis system by joint classification and segmentation. IEEE Trans. Image Process. 30, 3113–3126 (2021). https://doi.org/10.1109/TIP.2021.3058783

    Article  Google Scholar 

  54. Sajid, N.: COVID-19 Patients Lungs X Ray Images 10000. (2020). https://www.kaggle.com/nabeelsajid917/covid-19-x-ray-10000-images

  55. Italian Society of Medical and Interventional Radiology (2020) Italian Society of Medical and Interventional Radiology (2020). https://www.sirm.org/en/category/articles/covid-19-database/

  56. Ravi, V., Narasimhan, H., Chakraborty, C., Pham, T.D.: Deep learning-based meta-classifier approach for COVID-19 classification using CT scan and chest X-ray images. Multimed. Syst. 28, 1401–1415 (2022). https://doi.org/10.1007/s00530-021-00826-1

    Article  Google Scholar 

  57. Canayaz, M., Şehribanoğlu, S., Özdağ, R., Demir, M.: COVID-19 diagnosis on CT images with Bayes optimization-based deep neural networks and machine learning algorithms. Neural Comput. Appl. 34, 5349–5365 (2022). https://doi.org/10.1007/s00521-022-07052-4

    Article  Google Scholar 

  58. Afif, M., Ayachi, R., Said, Y., Atri, M.: Deep learning-based technique for lesions segmentation in CT scan images for COVID-19 prediction. Multimed. Tools Appl. (2023). https://doi.org/10.1007/s11042-023-14941-w

    Article  Google Scholar 

  59. Patro, K.K., Allam, J.P., Hammad, M., et al.: SCovNet: a skip connection-based feature union deep learning technique with statistical approach analysis for the detection of COVID-19. Biocybern. Biomed. Eng. 43, 352–368 (2023). https://doi.org/10.1016/j.bbe.2023.01.005

    Article  Google Scholar 

  60. Kanne, J.P., Little, B.P., Chung, J.H., et al.: Essentials for radiologists on COVID-19: an update- radiology scientific expert panel. Radiology (2020). https://doi.org/10.1148/radiol.2020200527

    Article  Google Scholar 

  61. Danon, D., Arar, M., Cohen-Or, D., Shamir, A.: Image resizing by reconstruction from deep features. Comput. Vis. Media 7, 453–466 (2021). https://doi.org/10.1007/s41095-021-0216-x

    Article  Google Scholar 

  62. Kociołek, M., Strzelecki, M., Obuchowicz, R.: Does image normalization and intensity resolution impact texture classification? Comput. Med. Imaging Graph. (2020). https://doi.org/10.1016/j.compmedimag.2020.101716

    Article  Google Scholar 

  63. Kavitha, S., Inbarani, H.: COVID-19 and MRI image denoising using wavelet transform and basic filtering. Proc—5th Int Conf Intell Comput Control Syst ICICCS 2021 792–799. (2021). https://doi.org/10.1109/ICICCS51141.2021.9432307

  64. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data (2019). https://doi.org/10.1186/s40537-019-0197-0

    Article  Google Scholar 

  65. Arumuga, P., Sathik, M.: Image denoising using discrete wavelet transform and edge information. Int. J. Comput. Sci. Netw. Secur. 8, (2008)

  66. Nason, G.P., Silverman, B.W.: The stationary wavelet transform and some statistical applications. Lect. Notes Stat. 103, 281–300 (1995). https://doi.org/10.1007/978-1-4612-2544-7_17

    Article  MATH  Google Scholar 

  67. Ellinas, J.N., Mandadelis, T., Tzortzis, A., Aslanoglou, L.: Image de-noising using wavelets. 9, 97–109 (2014)

  68. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41, 613–627 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  69. Chang, S.G., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9, 1532–1546 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  70. Antoniadis, A., Bigot, J., Sapatinas, T.: Wavelet estimators in nonparametric regression: a comparative simulation study. J. Stat. Softw. 6, 1–83 (2001). https://doi.org/10.18637/jss.v006.i06

    Article  Google Scholar 

  71. Fodor, I.K., Kamath, C.: Denoising through wavelet shrinkage: an empirical study. J. Electron. Imaging 12, 151–160 (2003). https://doi.org/10.1117/1.1525793

    Article  Google Scholar 

  72. Howard, A.G., Zhu, M., Chen, B., et al.: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (2017)

  73. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: 32nd International Conference on Machine Learning, ICML 2015. pp 448–456 (2015)

  74. He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classificatio. In: Proceedings of the IEEE International Conference on Computer Vision. pp 1026–1034 (2014)

  75. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. 7th Int Conf Learn Represent ICLR 2019 (2019)

  76. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: Proceedings—30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. pp 1800–1807 (2017)

  77. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning Transferable Architectures for Scalable Image Recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. pp 8697–8710 (2018)

  78. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings—30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. pp 2261–2269 (2017)

  79. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: 31st AAAI Conference on Artificial Intelligence, AAAI 2017. pp 4278–4284 (2017)

  80. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet Classification with Deep Convolutional Neural Networks. In: Advances in Neural Information Processing Systems (2012)

  81. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. 3rd Int Conf Learn Represent ICLR 2015—Conf Track Proc 1–14 (2015)

  82. Gaur, L., Bhatia, U., Jhanjhi, N.Z., et al.: Medical image-based detection of COVID-19 using Deep Convolution Neural Networks. Multimed. Syst. 29, 1729–1738 (2023). https://doi.org/10.1007/s00530-021-00794-6

    Article  Google Scholar 

  83. Asif, S., Zhao, M., Tang, F., Zhu, Y.: A deep learning-based framework for detecting COVID-19 patients using chest X-rays. Multimed. Syst. 28, 1495–1513 (2022). https://doi.org/10.1007/s00530-022-00917-7

    Article  Google Scholar 

  84. Ardakani, A.A., Kanafi, A.R., Acharya, U.R., et al.: Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: results of 10 convolutional neural networks. Comput. Biol. Med. J. 121, 103795 (2020)

    Article  Google Scholar 

  85. Vaishya, R., Javaid, M., Khan, I.H., Haleem, A.: Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 14, 337–339 (2020). https://doi.org/10.1016/j.dsx.2020.04.012

    Article  Google Scholar 

  86. Wang, S., Kang, B., Ma, J., et al.: A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). medRxiv (2020). https://doi.org/10.1101/2020.02.14.20023028

    Article  Google Scholar 

  87. Ieracitano, C., Mammone, N., Versaci, M., et al.: A fuzzy-enhanced deep learning approach for early detection of Covid-19 pneumonia from portable chest X-ray images. Neurocomputing 481, 202–215 (2022). https://doi.org/10.1016/j.neucom.2022.01.055

    Article  Google Scholar 

  88. Sunitha, G., Arunachalam, R., Abd-Elnaby, M., et al.: A comparative analysis of deep neural network architectures for the dynamic diagnosis of COVID-19 based on acoustic cough features. Int. J. Imaging Syst. Technol. 32, 1433–1446 (2022). https://doi.org/10.1002/ima.22749

    Article  Google Scholar 

  89. NIH: Chest X-ray dataset. https://www.kaggle.com/nih-chest-xrays/data. Accessed 25 Jun 2020 (2020)

  90. He, X., Yang, X., Zhang, S., et al.: Sample-efficient deep learning for COVID-19 diagnosis based on CT scans. IEEE Trans. Med. Imaging (2020). https://doi.org/10.1101/2020.04.13.20063941

    Article  Google Scholar 

  91. Loey, M., Manogaran, G., Khalifa, N.E.M.: A deep transfer learning model with classical data augmentation and CGAN to detect COVID-19 from chest CT radiography digital images. Neural Comput. Appl. (2020). https://doi.org/10.1007/s00521-020-05437-x

    Article  Google Scholar 

  92. Pham, T.D.: A comprehensive study on classification of COVID-19 on computed tomography with pretrained convolutional neural networks. Sci. Rep. 10, 1–8 (2020). https://doi.org/10.1038/s41598-020-74164-z

    Article  Google Scholar 

  93. Hernandez, J.F., Cruz, S.: An ensemble approach for multi-stage transfer learning models for COVID-19 detection from chest CT scans. Intell. Med. J. (2020). https://doi.org/10.1016/j.ibmed.2021.100027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaspreet Kaur.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, J., Kaur, P. A CNN Transfer Learning-Based Automated Diagnosis of COVID-19 From Lung Computerized Tomography Scan Slices. New Gener. Comput. 41, 795–838 (2023). https://doi.org/10.1007/s00354-023-00232-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-023-00232-3

Keywords

Navigation