Skip to main content
Log in

A Dense Network Approach with Gaussian Optimizer for Cardiovascular Disease Prediction

  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

The effective method for cardiovascular disease (CVD) risk prediction is done by training the deep neural networks on the well-defined training dataset. The irregular subset from the real dataset with a greater data variance is considered for prediction. The proposed system uses the trained datasets to separate common and greatly biased subsets for accurately implementing the prediction models when many previous models are learning from the random samples of training datasets. The feature selection is done with a Binary Krill Herd meta-heuristic optimizer (B-KHA), and the extracted features are fed to the CapNet model for prediction purposes. In addition, the isolated training groups learn the network classifiers. This proposed model used the Cleveland dataset gathered from online resources. The experiment proves that the proposed model improves the network performance by appropriate prediction. The suggested model shows that the experimental outcomes perform better than the traditional machine learning algorithms, with 95% accuracy, 94% specificity, 94% precision, 97% sensitivity, 95% F1-score, and 90% Mathews’ Correlation Coefficient (MCC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available in the UCI machine learning repository.

References

  1. Gaziano, T.A., Bitton, A., Anand, S., Abrahams-Gessel, S., Murphy, A.: Growing epidemic of coronary heart disease in low-and middle-income countries. Curr. Probl. Cardiol.. Probl. Cardiol. 35(2), 72–115 (2010)

    Article  Google Scholar 

  2. Ramalingam, V.V., Dandapath, A., Raja, M.K.: Heart disease prediction using machine learning techniques: a survey. Int. J. Eng. Technol. 7(2.8), 684–687 (2018)

    Article  Google Scholar 

  3. Fatima, M., Pasha, M.: Survey of machine learning algorithms for disease diagnostic. J. Intell. Learn. Syst. Appl.Intell. Learn. Syst. Appl. 9(01), 1 (2017)

    Google Scholar 

  4. Otoom, A.F., Abdallah, E.E., Kilani, Y., Kefaye, A., Ashour, M.: Effective diagnosis and monitoring of heart disease. Int. J. Softw. Eng. Appl. 9(1), 143–156 (2015)

    Google Scholar 

  5. Chaurasia, V., Pal, S.: Data mining approach to detect heart diseases. Int. J. Adv. Comput. Sci. Inf. Technol. 2, 56–66 (2014)

    Google Scholar 

  6. Vembandasamy, K., Sasipriya, R., Deepa, E.: Heart diseases detection using Naive Bayes algorithm. Int. J. Innov. Sci. Eng. Technol. 2(9), 441–444 (2015)

    Google Scholar 

  7. Parthiban, G., Srivatsa, S.K.: Applying machine learning methods in diagnosing heart disease for diabetic patients. Int. J. Appl. Inf. Syst. 3(7), 25–30 (2012)

    Google Scholar 

  8. Benjamin, E.J., Muntner, P., Alonso, A., Bittencourt, M.S., Callaway, C.W., Carson, A.P., Chamberlain, A.M., Chang, A.R., Cheng, S., Das, S.R., Delling, F.N., Djousse, L., Elkind, M.S.V., Ferguson, J.F., Fornage, M., Jordan, L.C., Khan, S.S., Kissela, B.M., Knutson, K.L., Kwan, T.W., Lackland, D.T., Lewis, T.T., Lichtman, J.H., Longenecker, C.T., Loop, M.S., Lutsey, P.L., Martin, S.S., Matsushita, K., Moran, A.E., Mussolino, M.E., O’Flaherty, M., Pandey, A., Perak, A.M., Rosamond, W.D., Roth, G.A., Sampson, U.K.A., Satou, G.M., Schroeder, E.B., Shah, S.H., Spartano, N.L., Stokes, A., Tirschwell, D.L., Tsao, C.W., Turakhia, M.P., VanWagner, L.B., Wilkins, J.T., Wong, S.S., Virani, S.S., American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee: Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation 139(10), e56–e528 (2019)

    Article  Google Scholar 

  9. Ismaeel, S., Miri, A., & Chourishi, D. (2015, May). Using the Extreme Learning Machine (ELM) technique for heart disease diagnosis. In 2015 IEEE Canada International Humanitarian Technology Conference (IHTC2015) (pp. 1–3). IEEE.

  10. Kanikar, P., Shah, D.R.: Prediction of cardiovascular diseases using support vector machine and Bayesien classification. Int. J. Comput. Appl. 156(2), 8875–8887 (2016)

    Google Scholar 

  11. Siontis, K.C., Noseworthy, P.A., Attia, Z.I., Friedman, P.A.: Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat. Rev. Cardiol.Cardiol. 18(7), 465–478 (2021)

    Article  Google Scholar 

  12. Anbarasi, M., Anupriya, E., Iyengar, N.C.S.N.: Enhanced prediction of heart disease with feature subset selection using genetic algorithm. Int. J. Eng. Sci. Technol. 2(10), 5370–5376 (2010)

    Google Scholar 

  13. Dwivedi, A.K., Imtiaz, S.A., Rodriguez-Villegas, E.: Algorithms for automatic analysis and classification of heart sounds–a systematic review. IEEE Access 7, 8316–8345 (2018)

    Article  Google Scholar 

  14. Allen, L.A., Stevenson, L.W., Grady, K.L., Goldstein, N.E., Matlock, D.D., Arnold, R.M., Cook, N.R., Felker, G.M., Francis, G.S., Hauptman, P.J., Havranek, E.P., Krumholz, H.M., Mancini, D., Riegel, B., Spertus, J.A.: Decision making in advanced heart failure: a scientific statement from the American Heart Association. Circulation 125(15), 1928–1952 (2012)

    Article  Google Scholar 

  15. Ansarullah, S.I., Kumar, P.: A systematic literature review on cardiovascular disorder identification using knowledge mining and machine learning method. Int. J. Recent Technol. Eng 7(6S), 1009–1015 (2019)

    Google Scholar 

  16. Nazir, S., Shahzad, S., Mahfooz, S., Nazir, M.: Fuzzy logic based decision support system for component security evaluation. Int. Arab J. Inf. Technol. 15(2), 224–231 (2018)

    Google Scholar 

  17. Amin, M.S., Chiam, Y.K., Varathan, K.D.: Identification of significant features and data mining techniques in predicting heart disease. Telematics Inform. 36, 82–93 (2019)

    Article  Google Scholar 

  18. Mienye, I.D., Sun, Y., Wang, Z.: An improved ensemble learning approach for the prediction of heart disease risk. Inform. Med. Unlocked 20, 100402 (2020)

    Article  Google Scholar 

  19. Enriko, I.K.A., Suryanegara, M., Gunawan, D.: Heart disease prediction system using k-Nearest neighbor algorithm with simplified patient’s health parameters. J. Telecommun. Electron. Comput. Eng. 8(12), 59–65 (2016)

    Google Scholar 

  20. Subhadra, K., Vikas, B.: Neural network based intelligent system for predicting heart disease. Int. J. Innov. Technol. Explor. Eng. 8(5), 484–487 (2019)

    Google Scholar 

  21. Tarawneh M, Embarak O. Hybrid approach for heart disease prediction using data mining techniques. In Advances in Internet, Data and Web Technologies: The 7th International Conference on Emerging Internet, Data and Web Technologies (EIDWT-2019). Springer International Publishing. 2019; 447–454

  22. Jagtap, A., Malewadkar, P., Baswat, O., Rambade, H.: Heart disease prediction using machine learning. Int. J. Res. Eng. Sci. Manag 2(2), 352–355 (2019)

    Google Scholar 

  23. Kim, J.K., Kang, S.: Neural network-based coronary heart disease risk prediction using feature correlation analysis. J. Healthc. Eng. (2017). https://doi.org/10.1155/2017/2780501

    Article  Google Scholar 

  24. Pescatello, L.S., Wu, Y., Panza, G.A., Zaleski, A., Guidry, M.: Development of a novel clinical decision support system for exercise prescription among patients with multiple cardiovascular disease risk factors. Mayo Clin. Proc. Innov. Qual. Outcomes 5(1), 193–203 (2021)

    Article  Google Scholar 

  25. Rubini PE, Subasini CA, Katharine AV, Kumaresan V, Kumar SG, Nithya TM. A cardiovascular disease prediction using machine learning algorithms. Ann. Roman. Soc. Cell Biol. 2021;904–912.

  26. Kumar, A., Priyanka, S., Dhanashree, K., Praveen, V., Rekha, R.: Efficient binary grasshopper optimization-based neural network algorithm for bitcoin value prediction. Int. J. Nonlinear Anal. Appl. 13, 53–60 (2022). https://doi.org/10.22075/ijnaa.2022.6330

    Article  Google Scholar 

  27. Arunachalam, S.K., Rekha, R.: A novel approach for cardiovascular disease prediction using machine learning algorithms. Concurr. Comput. Pract. Exp. 34(19), e7027 (2022)

    Article  Google Scholar 

  28. Kumar, A.S., Rekha, R.: An improved hawks optimizer based learning algorithms for cardiovascular disease prediction. Biomed. Signal Process. Control 81, 104442 (2023)

    Article  Google Scholar 

  29. Singh A, Kumar R. Heart disease prediction using machine learning algorithms. In 2020 international conference on electrical and electronics engineering (ICE3). 2020, (pp. 452–457). IEEE.

  30. Saran Kumar, A., Chandrakala, D.: A survey on customer churn prediction using machine learning techniques. Int. J. Comput. Appl. 975, 8887 (2016)

    Google Scholar 

  31. El Boujnouni, I., Harouchi, B., Tali, A., Rachafi, S., Laaziz, Y.: Automatic diagnosis of cardiovascular diseases using wavelet feature extraction and convolutional capsule network. Biomed. Signal Process. Control 81, 104497 (2023)

    Article  Google Scholar 

  32. Kanagarathinam, K., Sankaran, D., Manikandan, R.: Machine learning-based risk prediction model for cardiovascular disease using a hybrid dataset. Data Knowl. Eng.Knowl. Eng. 140, 102042 (2022)

    Article  Google Scholar 

  33. Reddy, K.V.V., Elamvazuthi, I., Aziz, A.A., Paramasivam, S., Chua, H.N., Pranavanand, S.: An efficient prediction system for coronary heart disease risk using selected principal components and hyperparameter optimization. Appl. Sci. 13(1), 118 (2023)

    Article  Google Scholar 

  34. Aydemir, S.B.: A novel arithmetic optimization algorithm based on chaotic maps for global optimization. Evol. Intell.. Intell. 16(3), 981–996 (2022)

    Article  Google Scholar 

  35. Düznli̇e, T., Onay, F.K., Aydemi̇r, S.B.: Improved honey badger algorithms for parameter extraction in photovoltaic models. Optik 268, 169731 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Saran Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A.S., Rekha, R. A Dense Network Approach with Gaussian Optimizer for Cardiovascular Disease Prediction. New Gener. Comput. 41, 859–878 (2023). https://doi.org/10.1007/s00354-023-00234-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-023-00234-1

Keywords

Navigation