Skip to main content

Measuring autonomy freedom

  • Original Paper
  • Published:
Social Choice and Welfare Aims and scope Submit manuscript

Abstract

In the measurement of autonomy freedom, the admissible potential preference relations are elicited by means of the concept of ‘reasonableness’. In this paper we argue for an alternative criterion based on information about the decision maker’s ‘awareness’ of his available opportunities. We argue that such an interpretation of autonomy fares better than that based on reasonableness. We then introduce some axioms that capture this intuition and study their logical implications. In the process, a new measure of autonomy freedom is characterized, which generalizes some of the measures so far constructed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bavetta S, Guala F (2003) Autonomy freedom and deliberation. J Theor Polit 15:423–443

    Article  Google Scholar 

  • Dworkin G (1988) The theory and practice of autonomy. Cambridge University Press, Cambridge

    Google Scholar 

  • Jones P, Sugden R (1982) Evaluating choice. Int Rev Law Econ 12:47–65

    Article  Google Scholar 

  • Mill JS (1859) On Liberty. John W. Parker and Son, Oxford University Press, 1991

  • Mill JS (1863) Utilitarianism. John W. Parker and Son, Oxford University Press, 1991

  • Nozick R (1974) Anarchy, state and utopia. Basil Blackwell, Oxford

    Google Scholar 

  • Pattanaik PK, Xu Y (1990) On ranking opportunity sets in terms of freedom of choice. Réch Écon Louvain 56:383–390

    Google Scholar 

  • Pattanaik PK, Xu Y (1998) On preference and freedom. Theory Decis 44:173–198

    Article  MathSciNet  MATH  Google Scholar 

  • Raz J (1986) The morality of freedom. Oxford University Press, Oxford

    Google Scholar 

  • Romero Medina A (2001) More on preference and freedom. Soc Choice Welf 18:179–191

    Article  MATH  MathSciNet  Google Scholar 

  • Sen AK (1988) Freedom of choice Concept and content. Eur Econ Rev 32:269–294

    Article  Google Scholar 

  • Sen AK (1991) Welfare, preference and freedom. J Econom 50:15–29

    Article  MATH  Google Scholar 

  • Sen AK (1993) Markets and freedoms: achievements and limitations of the market mechanism in promoting individual freedoms. Oxf Econ Pap 45:519–541

    Google Scholar 

  • Sugden R (1998) The metric of opportunity. Econ Philos 14:307–337

    Article  Google Scholar 

  • Suppes P (1987) Maximizing freedom of decision: an axiomatic analysis. In: Feiwel GR (ed) Arrow and the Foundations of the Theory of Economic Policy. MacMillan, London, pp 243–254

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastiano Bavetta.

Additional information

We thank Martin van Hees, Robert Sugden, Prasanta Pattanaik, the participants at workshops at the CPNSS, London School of Economics, and at the University of Caen and an anonymous referee for their suggestions. The support of the CPNSS is gratefully acknowledged. This paper is part of a research project on “The Analysis and Measurement of Freedom” funded by the Ministero dell’Istruzione, Università e Ricerca (Italy). Its financial support is gratefully acknowledged.

Appendix: the proof of Proposition 4.2

Appendix: the proof of Proposition 4.2

Before proving Proposition 4.2, we state and prove the following lemma.

Lemma 6.1

If ⪰ satisfies INF and COM, then, \(\forall A \in {\user1{{\wp }}}{\left( {\text{X}} \right)}\), \(\forall \Pi _{i} \in {\user1{{\wp }}}{\left( \Pi \right)}\),

$${\left( {A,\Pi _{i} } \right)} \sim {\left( {\max _{i} {\left( A \right)},\Pi _{i} } \right)}.$$

Proof

If max i (A)=A, then the result clearly follows. If not, suppose ∣max i (A)∣=g and let max i (A)={a 1,...,a g } and A-max i (A)=Â. Now, max i ({a 1}∪Â)=max i ({a 1})={a 1} and max i ({a 2}∪Â)=max i ({a 2})={a 2}. Hence by INF,

$${\left( {{\left\{ {a_{1} } \right\}} \cup \widehat{A},\Pi _{i} } \right)} \sim {\left( {{\left\{ {a_{1} } \right\}},\Pi _{i} } \right)}$$

and

$${\left( {{\left\{ {a_{2} } \right\}} \cup \widehat{A},\Pi _{i} } \right)} \sim {\left( {{\left\{ {a_{2} } \right\}},\Pi _{i} } \right)}.$$

Clearly, {a 1}∩{a 2}=∅, max i ({a 1}⋃{a 2})=({a 1}⋃{a 2}), ({a 1}⋃Â)∩({a 2}⋃Â)= and Â∩(max i (({a 1}⋃Â)⋃({a 2}⋃Â)))=∅. Hence we can apply axiom COM and obtain,

$${\left( {{\left\{ {a_{1} } \right\}} \cup {\left\{ {a_{2} } \right\}} \cup \widehat{A},\Pi _{i} } \right)} \sim {\left( {{\left\{ {a_{1} } \right\}} \cup {\left\{ {a_{2} } \right\}},\Pi _{i} } \right)}.$$

By considering successively a 3,a 4,...,a g , and applying INF and COM repeatedly, we finally obtain

$${\left( {\max _{i} {\left( A \right)} \cup \widehat{A},\Pi _{i} } \right)} \sim {\left( {\max _{i} {\left( A \right)},\Pi _{i} } \right)}$$

or

$${\left( {A,\Pi _{i} } \right)} \sim {\left( {\max _{i} {\left( A \right)},\Pi _{i} } \right)}.$$

Q.E.D.

We are now in the position to prove Proposition 4.2.

Proof

Necessity is straightforward. We therefore prove sufficiency. To start with, we show that

$${\left| {max_{i} {\left( A \right)}} \right|} = {\left| {max_{j} {\left( B \right)}} \right|} \Rightarrow {\left( {A,\Pi _{i} } \right)} \sim {\left( {B,\Pi _{j} } \right)}.$$
(1)

Suppose ∣max i (A)∣=∣max j (B)∣=g. It follows that, max i (A)={a 1,...;,a g } and max j (B)={b 1,...,b g }. Using INF, ({a 1},Π i )∼({b 1},Π j ), ({a 2},Π i )∼({b 2},Π j ) and {a 1}∩{a 2}=∅. Now, max i {a 1,a 2}={a 1,a 2}, so we can use axiom COM to yield:

$${\left( {{\left\{ {a_{1} ,a_{2} } \right\}},\Pi _{i} } \right)} \sim {\left( {{\left\{ {b_{1} ,b_{2} } \right\}},\Pi _{j} } \right)}.$$

By INF, ({a 3},Π i )∼({b 3},Π j ); by COM,

$${\left( {{\left\{ {a_{1} ,a_{2} ,a_{3} } \right\}},\Pi _{i} } \right)} \sim {\left( {{\left\{ {b_{1} ,b_{2} ,b_{3} } \right\}},\Pi _{j} } \right)}$$

and so on. Finally we have:

$${\left( {{\left\{ {a_{1} , \ldots ,a_{g} } \right\}},\Pi _{i} } \right)} \sim {\left( {{\left\{ {b_{1} , \ldots ,b_{g} } \right\}},\Pi _{j} } \right)},$$

i.e.,

$${\left( {max_{i} {\left( A \right)},\Pi _{i} } \right)} \sim {\left( {max_{j} {\left( B \right)},\Pi _{j} } \right)}$$
(2)

Since ⪰ satisfies INF and COM, we can apply Lemma 6.1 and obtain

$${\left( {A,\Pi _{i} } \right)} \sim {\left( {max_{i} {\left( A \right)},\Pi _{i} } \right)}$$
(3)

and

$${\left( {B,\Pi _{j} } \right)} \sim {\left( {max_{i} {\left( B \right)},\Pi _{j} } \right)}$$
(4)

Now, Eqs. (2), (3), (4), and transitivity of ⪰ imply (A, Π i )∼(B, Π j ).

Now we show that

$${\left| {\max _{i} {\left( A \right)}} \right|} > {\left| {\max _{j} {\left( B \right)}} \right|} \Rightarrow {\left( {A,\Pi _{i} } \right)} \succ {\left( {B,\Pi _{j} } \right)}.$$

Suppose ∣max i (A)∣=g+t and ∣max j (B)∣=g. So, max i (A)={a 1,...,a g+t } and max j (B)={b 1,...,b g }. Now, max i ({a 1,...,a g })={a 1,...,a g }. Hence, by (1),

$${\left( {{\left\{ {a_{1} , \ldots ,a_{g} } \right\}},\Pi _{i} } \right)} \sim {\left( {B,\Pi _{j} } \right)}$$
(5)

Now, max i ({a 1,...,a g+1})={a 1,...,a g+1}. By ARA,

$${\left( {{\left\{ {a_{1} , \ldots ,a_{{g + 1}} } \right\}},\Pi _{i} } \right)} \succ {\left( {{\left\{ {a_{1} , \ldots ,a_{g} } \right\}},\Pi _{i} } \right)}$$

and, by (5) and transitivity of ≻,

$${\left( {{\left\{ {a_{1} , \ldots ,a_{{g + 1}} } \right\}},\Pi _{i} } \right)} \succ {\left( {B,\Pi _{j} } \right)}.$$

By adding a g+2,...,a g+t successively, and by using ARA repeatedly, we have

$${\left( {{\left\{ {a_{1} , \ldots ,a_{{g + t}} } \right\}},\Pi _{i} } \right)} \succ {\left( {B,\Pi _{j} } \right)}$$

i.e.,

$${\left( {max_{i} {\left( A \right)},\Pi _{i} } \right)} \succ {\left( {B,\Pi _{j} } \right)}.$$
(6)

We know from Lemma 4.1 that

$${\left( {A,\Pi _{i} } \right)} \sim {\left( {max_{i} {\left( A \right)},\Pi _{i} } \right)}.$$

Clearly, (A, Π i )∼(max i (A),Π i ), (6) and transitivity of ⪰ imply (A, Π i )≻(B,Π j ). Q.E.D.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bavetta, S., Peragine, V. Measuring autonomy freedom. Soc Choice Welfare 26, 31–45 (2006). https://doi.org/10.1007/s00355-005-0027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00355-005-0027-5

Keywords

JEL Classification