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Abstract

In this paper, we contrast direct and representative democracy. In a direct democ-

racy, individuals have the opportunity to vote over the alternatives in every choice

problem the population faces. In a representative democracy, the population commits

to a candidate ex ante who will then make choices on its behalf. While direct democracy

is normatively appealing, representative democracy is the far more common institution

because of its practical advantages. The key question, then, is whether representative

democracy succeeds in implementing the choices that the group would make under

direct democracy. We find that, in general, it does not. We model a population as

a distribution of voters with strict preferences over a finite set of alternatives and a

candidate as a strict ordering of those alternatives that serves as a binding, contingent

plan of action. We focus on the case where the direct democracy choices of the popu-

lation are consistent with a strict ordering of the alternatives. We show that even in

this case, where the normative recommendation of direct democracy is clearest, repre-

sentative democracy may not elect the candidate with this ordering. Keywords: direct

∗Mailing Address: 1945 N. High St, Arps Hall 427, Columbus, OH 43210; Email: coffman.201@osu.edu;
Telephone: 614-247-8718.
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1 Introduction

Direct democracy is a fundamental principle of collective decision-making. When a choice

problem arrives, individuals should have the opportunity to express preferences over the

alternatives. A good decision-making rule then aggregates these preferences into a choice

that reflects the will of the group. While many aspects of social decision-making have been

debated, this individual right to direct participation has remained a normative ideal from

both a theoretical and popular standpoint.

Yet, despite its normative appeal, direct democracy is relatively rare in practice. Just

over half of the states in the United States allow for recalls and/or popular referendums and

no forms of direct democracy exist at the federal level (NCSL.org). Direct democracy plays a

similarly minor role in the governments of countries around the world, with the well-studied

exception of Switzerland (Frey 1994). Most institutions instead take the form of represen-

tative democracies, under which elected offi cials make decisions on behalf of the electorate.

From a practical perspective, representative democracies have an edge over direct democra-

cies as they dramatically reduce transaction costs and shift the burden of decision-making

to a small group of well-informed leaders. The question, then, is whether representative

democracy, with its practical advantages, can successfully implement the choices that would

be reached under the more normatively attractive direct democracy.1

This paper tackles this question from a theoretical perspective. We take a majoritarian

approach to modeling both direct and representative democracy. In addition to being a

widely-implemented and well-accepted political principle, majoritarianism has been shown to

be a collective decision-making rule that works well over a large class of domains (Dasgupta

and Maskin 2008). To analyze outcomes under direct democracy, we simply look at the

tournament over alternatives induced by majority rule. We focus on populations where

majority preferences over alternatives produce a ranking of alternatives, with each alternative

1There is a rich existing literature on representative democracy, though in general this literature has
focused more on voting power and proportional representation. See, for example, Tullock (1967), Chamberlin
and Courant (1983), Monroe (1995), Felsenthal and Machover (1998), and Potthof and Brams (1998).

2



majority-preferred to all others below it in the ranking.2 In these cases, the normative

recommendation for representative democracy is most clear: we expect that the candidate

whose preferences best match this ordering of alternatives should be elected.

In our model of representative democracy, members of the population vote over candidates

rather than alternatives. To simplify our setting, we define a candidate as an ordinal ranking

of alternatives: a binding, contingent plan of action for future choice problems. We assume

that when a choice problem of alternatives arrives, the social decision is made according

to the ordering of the elected candidate.3 The key modeling assumption is how individuals

vote over candidates. We use the Kemeny distance to map preferences over alternatives into

preferences over candidates. That is, when faced with a pairwise choice between candidates,

we assume that an individual votes for the candidate with whom she is most likely to agree

about the choice from a randomly selected pair of alternatives. Once we know individuals’

preferences over candidates, we can compare these candidates pairwise. In a comparison

of two candidates, the winning candidate is the candidate who earns a majority of the

population’s votes: the candidate with whom the majority of the population is closer to

according to the Kemeny distance. This type of political action generates a tournament

over the candidates. We use the uncovered set to identify the winning candidates given an

arbitrary tournament structure. The uncovered set is an appealing solution concept, as it is

Condorcet consistent and contains only Pareto undominated orderings. The uncovered set

also contains many other popular tournament solution concepts, which allows us to generalize

our results to a variety of other settings.

We find that for problems with a small number of alternatives, representative democracy

does succeed in electing candidates that implement the choices made under direct democ-

racy. But, for general problems, we derive a negative result. We show that even for the

2This is the case where the tournament over alternatives is not only complete and asymmetric, but also
transitive.

3In the language of Edward Burke, this is a delegate model of representative democracy, rather than
a trustee model, as the elected offi cial is committed to enacting the platform selected by the voters. See
Maskin and Tirole (2004) or Fox and Shotts (2013) for discussions of the delegate versus trustee debate.
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most well-behaved populations, where majority preferences over the alternatives are con-

sistent with a strict ordering, representative democracy may not elect the candidate with

this ordering. That is, when given a chance to commit ex ante to a binding plan of action,

the population may select a plan which contradicts the majority preferences on some choice

problems. Following our results section, we discuss related works that highlight the more

general diffi culty in identifying forms of representative democracy that are consistent with

direct democracy.

2 Notation and Model

We first lay out notation and then discuss our model.

2.1 Notation

We will adopt much of the notation of Baldiga and Green (2013). We use a finite space

of alternatives, X = {a1, a2, ...., an}. A preference, denoted π, is a strict ordering of

the alternatives, where π corresponds to a permutation of the integers {1, ..., n}; given the

preference π = (aπ(1)aπ(2)...aπ(n)), ai is preferred to aj if and only if π−1(i) < π−1(j). The

set of all n! preferences over X is Π. It will be useful to write e to represent the natural

ordering of the alternatives, e = (a1a2...an) ∈ Π.

A population, λ, is a distribution over Π. Let Λ be the set of all distributions over Π.

We model a candidate as a strict ordering of the alternatives in X, which serves as a

binding, contingent plan of action. We will write candidate π to denote the candidate with

ordering π. In all analysis below, we consider all candidates to be available; that is, the set

of candidates is equal to Π.

We model these majoritarian systems using tournaments. A tournament is a complete,

asymmetric binary relation. Our analysis considers two types of tournaments: tournaments

on the alternative space and tournaments on the candidate space. We use Γ(X) to denote a
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tournament on the space of alternatives; we reserve the traditional T to refer to a tour-

nament on the space of candidates, T (Π). In both cases, a tournament depends upon

the preferences of the population; therefore, we write Γλ or T λ to denote the tournaments

generated by a population λ.

2.2 Models of Direct and Representative Democracy

Under direct democracy, members of the population vote over alternatives. We use the

majority tournament to model these decisions. In this tournament, the relationship be-

tween any pair of alternatives is determined by majority rule: aiΓλaj if
∑
π∈Π

(λ(π|ai � aj)) >∑
π∈Π

(λ(π|aj � ai)).4 We write aiΓλaj if ai beats aj in the tournament Γλ(X). In the pop-

ulations we consider below, majority rule over alternatives will be consistent with a strict

ordering. We study this case because of the clear normative recommendation available.

When the majority rule tournament over alternatives produces a strict ordering, then in

order for representative democracy to be consistent with direct democracy, it must also

produce this ordering. In other cases, when majority preferences over alternatives are not

consistent with a strict ordering, there is no clear expectation for how representative democ-

racy should behave. Therefore, we choose only to define and test for consistency in the case

when majority preferences over alternatives do not cycle.5

Building a model of representative democracy requires a theory of how individuals choose

to vote over candidates. We use the Kemeny distance (also known as the bubble sort distance

and the Kendall distance) to define individuals’preferences over candidates. The Kemeny

distance between π and π′, which we will denote f(π, π′), is the number of pairs of alterna-

tives the two orderings rank differently (Kemeny 1959 and Kemeny Snell 1962); we assume

that voters prefer candidates who are closer (in terms of Kemeny distance) to their own

4We restrict attention to populations with no ties in the majority relation, guaranteeing a complete and
asymmetric tournament. This is similar to assuming an odd number of voters in the more common discrete
population framework.

5This is consistent with the approach of Laffond and Laine (2000), who also focus on the case where
majority preferences over alternatives produce an ordering.
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ordering of alternatives. Formally, given two candidates π and π′, a voter with preference π′′

will prefer π if and only if f(π′′, π) < f(π′′, π′). This is equivalent to assuming that a voter

prefers candidate π to candidate π′ if she is more likely to agree with candidate π about the

ranking of a randomly-drawn pair of alternatives (Baldiga and Green (2013) formalize this

interpretation). Of course, there are other ways of mapping preferences over alternatives

into preferences over candidates, and our results will be sensitive to this particular choice.

However, in order for our negative result to be as strong and surprising as possible, we want

to create as much parallelism as we can between the direct and representative democracy

models. Using the Kemeny distance to define preferences over candidates creates an appeal-

ing symmetry between the direct and representative democracy models. The preferences

over candidates defined by f(π, π′) depend only on each voter’s pairwise preferences over

alternatives, just as the preferences over alternatives defined by majority rule do. Previ-

ous work in this area has also used the Kemeny distance to determine voters’preferences

over orderings. For instance, in their investigation of the strategy-proofness of social welfare

functions, Bossert and Storcken (1992) assume, as we do, that individuals’preferences over

orderings are determined by relative proximity under the Kemeny distance. In Figure 1, we

provide an illustration of the Kemeny distances between the six strict orderings in Π for the

n = 3 case.

Figure 1: We use a hexagon to demonstrate the space of orderings for the n = 3 case,
with each vertex representing an ordering. Above, we illustrate the Kemeny distances from
e = a1a2a3 to each of the other orderings in the space.

Voters’preferences over candidates generate a tournament on Π, which we denote T λ.

Consider two strict orderings, π′ and π. Define a subset of preferences, Π1, such that for

all π′′ ∈ Π1, we have f(π′′, π′) < f(π′′, π), and define a subset of preferences, Π2, such that
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for all π′′ ∈ Π2, we have f(π′′, π) < f(π′′, π′). Then, we will say that π′ defeats π,that is

π′T λπ, if λ(Π1) > λ(Π2). In the event that λ(Π1) = λ(Π2), we can use a random tie-breaking

rule such as a coin flip to determine the T λ relationship between π and π′. Note that in the

space of distributions over strict orderings, this is a non-generic event. Furthermore, none

of the results presented below depend upon this assumption. This simply assures that all

tournaments are complete and asymmetric.6

2.3 Tournament Solutions

We consider only the simplest direct democracy tournaments, restricting our attention to

those tournaments generated by populations in which majority rule over alternatives is con-

sistent with a strict ordering. In these cases, there is a clear winner of the tournament: the

alternative which defeats all others in the tournament relation, the Condorcet winner. Fur-

thermore, because there are no cycles, we can describe the tournament by a strict ordering

where each alternative is majority-preferred to all those below it.

However, for general tournaments, including the tournaments over strict orderings we

study below, identifying the winners is non-trivial as the tournament relation may cycle.

Therefore, we need a tournament solution that will determine the best elements given an

arbitrary tournament structure. We use the uncovered set as our tournament solution (see

Gilles (1959), Fishburn (1977), and Miller (1980) for early work on this topic). We follow the

6This definition means we employ relative majority rule. We could alternatively define our tournaments
in terms of absolute majority rule. Under this assumption, we would have π′Tλπ only if a majority of voters
are strictly closer to π′ than π. For absolute majority rule, if neither candidate is closer to more than half
of the population, the two candidates would tie in the tournament relation.
In our framework, voters will often be indifferent between candidates. Each voter has a set of indifference

curves: a voter most prefers the candidate with his own ordering, then he equally prefers all candidates with
whom he disagrees about the choice from one pair of alternatives, and next he equally prefers all candidates
with whom he disagrees about the choice from two pairs of candidates, etc.
Given the large amount of indifference in our population, choosing to use absolute majority rule would

result in a large number of ties in our tournaments over orderings. These ties would disregard the information
we have on the voters who are not indifferent. For instance, in a tie between candidate π and π′, we may
have that 30% of the voters are indifferent between candidate π and candidate π′, 49% of the voters prefer π
to π′, and only 21% of voters prefer π′ to π. Despite the large disparity in the number of voters that strictly
prefer π to π′ as opposed to π′ to π, these two orderings would tie in the tournament relation. By using
relative majority rule, we use this information on strict preference, even in the cases where large subsets of
voters are indifferent between the two candidates.

7



definition given by Laslier (1997), applied to our tournaments over strict orderings. First,

define the covering relation of T . For a given T , we say πi covers πj if and only if:

(a) πiTπj, and

(b) for all πk ∈ Π, πjTπk ⇒ πiTπk

The uncovered set of T is the set of maximal elements of the covering relation: πi ∈

UC(T ) if and only if there does not exist πj ∈ Π such that πj covers πi.

As Miller (1980) describes, the uncovered set has a number of appealing properties. The

uncovered set is always a non-empty subset of the top cycle. And, unlike the top cycle, it

contains only Pareto undominated orderings.7 It is Condorcet consistent: if a Condorcet

winner exists, it will be the sole member of the uncovered set. The uncovered set also

characterizes the outcomes under a variety of familiar voting rules. Miller (1980) and Shepsle

and Weingast (1984) have shown that a number of voting procedures under both sincere and

sophisticated voting implement elements of the uncovered set. These results motivate our

use of the uncovered set. By working with this tournament solution, we avoid making specific

institutional assumptions. Instead, we identify the likely winners under majoritarian voting

rules more generally, under both sincere and strategic voting. Most importantly, for our

purposes, the uncovered set contains many other familiar tournament solution concepts.

Thus, the negative result we prove in this framework extends to a wide variety of other

reasonable approaches.

With this solution concept in place, we are ready to define consistency between direct

and representative democracy in our setting.

Definition 1 If majority preferences over alternatives are consistent with a strict ordering,

π, and π ∈ UC(T λ), we will say that order consistency holds. If, in addition, UC(T λ) is

a singleton, we will say that strong order consistency holds.

Note that UC(T λ) will be a singleton if and only if there is a Condorcet winner of this

7Note that a positive result (consistency between these forms of direct and representative democracy)
could be derived if one chose to use the less selective top cycle as the tournament solution concept. We
discuss this in more detail in Section 3.

8



tournament. Thus, strong order consistency requires that the candidate consistent with

majority preferences is selected as the unique Condorcet winner of the tournament over

candidates. In the analysis that follows, we show that strong order consistency holds for the

case of n = 3 but fails for problems with n > 3. Then, we provide a counterexample that

illustrates order consistency fails for n = 10.

3 Consistency Results for Direct and Representative

Democracy

First, we introduce a useful proposition.

Proposition 1 Consider a population where majority preferences are consistent with e.

Consider a strict ordering π. Obtain π′ from π by transposing exactly one pair of adja-

cent alternatives that appear in the natural order in π (that is, transpose a pair of adjacent

alternatives that π ordered in line with majority preference). Then, it must be that πT λπ′

for all such π′. Furthermore, if we take any of these π′ and obtain π′′ from π′ by transposing

exactly one pair of adjacent alternatives that appeared in the natural order in both π and π′,

we must have πT λπ′′.

Proof: Intuitively, when π and π′ agree on all but a single pair of alternatives, a voter

with the ordering π′′′ will be closest to whichever of these orderings it agrees with on the

pair in the question. Since π agrees with the majority preference on the pair in question, a

greater share of the population must be closer to π, yielding πT λπ′.

We can take this logic one step further to prove the claim for cases where π and π′′ agree

on all but two pairs of alternatives. Denote by α the subset of the population that agrees

with π on the first pair in question (the one transposed to obtain π′). Denote by β the subset

of the population that agrees with π on the second pair in question (the one transposed to

obtain π′′). Because π is consistent with the majority preference on both of these pairs, we
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know that λ(α) > 1
2
and λ(β) > 1

2
. Therefore:

2× (λ(α ∩ β)) + λ(α\β) + λ(β\α) > 1

We can rearrange this expression to show that:

λ(α ∩ β) > 1− (λ(α\β) + λ(β\α) + λ(α ∩ β))

The left-hand side of this equation is the fraction of the population that agrees with π on

both of the pairs in question and will be closer to π. The right-hand side of this equation

is the fraction of the population that disagrees with π on both of the pairs in question and

will be closer to π′′. The rest of the population will be equidistant. Thus, the equation tells

us that a larger fraction of the population will be closer to π than π′′, yielding πT λπ′′. �

The following corollary is a straightforward implication of Proposition 1 and will prove

useful in the following sections.

Corollary 1 A strict ordering that is consistent with the majority preferences of a population

λ, call this π∗, must beat all strict orderings that are no more than two transpositions away

from it; that is, we must have π∗T λπ for all π such that f(π∗, π) ≤ 2.

3.1 Consistency for n=3

We exploit this knowledge of the structure of tournaments over orderings to prove results for

the n = 3 case for populations with majority preferences consistent with a strict ordering.

Proposition 2 For n = 3, UC(T λ) satisfies strong order consistency.

Proof: We will work through the case where a1Γλa2, a2Γλa3, and a1Γλa3. As Figure 1

clearly demonstrates, we know that a1a3a2, a2a1a3, a2a3a1, and a3a1a2 are each less than or

equal to distance 2 from a1a2a3. Therefore, by Proposition 1, we know a1a2a3T
λπ for each

π ∈ {a1a3a2, a2a1a3, a2a3a1, a3a1a2}. Therefore, we just need to show that a1a2a3T
λa3a2a1
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in order to prove that a1a2a3 is the Condorcet winner of the tournament, and hence the only

member of the uncovered set. We can use the fact that a1Γλa3.

∑
πi∈Π

(λ(πi)|a1 �πi a3) >
∑
πi∈Π

(λ(πi)|a3 �πi a1)

λ(a1a2a3) + λ(a1a3a2) + λ(a2a1a3) > λ(a2a3a1) + λ(a3a1a2) + λ(a3a2a1)

This inequality states that the fraction of the population with orderings closer to a1a2a3

than a3a2a1 (the left-hand side) is greater than the fraction of the population with orderings

closer to a3a2a1 than a1a2a3. Thus, a1a2a3T
λa3a2a1, and UC(T λ) = {a1a2a3}. �

3.2 Inconsistency for General Problems

First, we present an example that shows that for n = 4, strong order consistency fails.

Consider the following population:

π λ(π)

a1a2a3a4 .399

a2a4a1a3 .2

a1a4a3a2 .2

a3a4a1a2 .201

The majority preferences of this population are consistent with e = a1a2a3a4. But,

there is no Condorcet winner of the tournament over candidates. Consider π̂ = a4a1a3a2.

We have f(π̂, a1a4a3a2) < f(e, a1a4a3a2) and f(π̂, a3a4a1a2) < f(e, a3a4a1a2), and we have

f(π̂, a2a4a1a3) = f(e, a2a4a1a3). So,

∑
π∈Π

[λ(π)|f(π̂, π) < f(e, π)] >
∑
π∈Π

[λ(π)|f(e, π) < f(π̂, π)]

As a result, π̂T λe. And, in fact, we can show that π̂ ∈ UC(T λ), with UC(T λ) =

{e, a1a2a4a3, a1a4a2a3, π̂}. We can extend this n = 4 example to a problem with an arbitrary
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number of alternatives by preserving the structure above for the first four alternatives and

simply appending additional alternatives in their natural order to the right end of each of

the four orderings above. This leads to the following proposition.

Proposition 3 For n > 3, UC(T λ) fails strong order consistency.

This is the strongest result that we can achieve for n = 4. In the Appendix, we prove

that order consistency must hold for n = 4 populations. For n ≥ 10, we are able to prove

a stronger result. We identify populations in which the strict ordering consistent with the

majority preferences is covered.

Theorem 1 For n ≥ 10, UC(T λ) fails order consistency.

Proof: We prove this through a general counterexample. First, we construct the popula-

tion. The majority preferences of our population λ will be consistent with e on all possible

pairs drawn from among the n alternatives. Select a set of j pairs of alternatives, where

5 ≤ j ≤ n
2
. Each pair should consist of two adjacent elements in the natural ordering, and

all pairs in the set should be disjoint. For example, it would be permissible to select {a1, a2}

and {a3, a4} as two of the pairs, but one could not select {a1, a2} and {a2, a3}, or {a1, a3} and

{a4, a6}. It will be helpful to have notation for the j pairs; let them be denoted p1, p2, ..., pj.

Note that since the pairs consist of adjacent and disjoint alternatives, it is always possible

to find a strict ordering π that agrees with the majority preference on any particular subset

of the pairs {p1, p2, ..., pj} exactly.

We will associate with each of the j pairs a particular strict ordering, πpi , where πpi

agrees with the majority preference on pair pi, disagrees with the majority preferences on

the other j− 1 pairs in the set {p1, p2, ..., pj}, and agrees with the majority preference on all

other pairs of alternatives.

Allocate the population as follows. Let λ(e) = 1
2
− ε, where ε < 1

2j
. Divide the rest of

the population evenly among the strict orderings {πp1 , πp2 , ..., πpj}, creating j equal masses

of size
1
2

+ε

j
.

12



It is straightforward to check that this population produces majority rule over alternatives

that agrees with e. For each pair not included in {p1, p2, ..., pj}, the population unanimously

prefers ai to ai+k, where i, k ∈ {1, .., n− 1}. For each of the pairs in {p1, p2, ..., pj}, we have

that (1
2
− ε) + (

1
2

+ε

j
) > 1

2
agrees with e.

Now we will show that for this population e /∈ UC(T λ). We do so by identifying a

strict ordering that covers e. Consider the strict ordering that disagrees with the majority

preferences on all of the pairs {p1, p2, ..., pj} and agrees with the majority preference on

all other pairs. Denote this ordering π̂. Since we are working with f(π, π′), the distance

between any two orderings is, up to a scale factor, the number of pairs over which the two

orderings disagree. For simplicity, we will scale our distances below to the number of pairwise

disagreements.

First we will show that π̂T e. We have f(πpi , π̂) = 1 and f(πpi , e) = j − 1 ∀i ∈ {1, ..., j}.

Therefore, we have 1
2

+ ε of the population that is closer to π̂ than e, so π̂T e.

In order to prove that π̂ covers e, we must show that there cannot exist a π′ such that

eTπ′ but π′T π̂. Suppose there did exist such a π′.

We have that eTπ′. This implies that we have f(e, πpi) ≤ f(π′, πpi) for at least some

i ∈ {1, ..., j}. Because we know f(e, πpi) = j − 1, this implies that f(π′, πpi) ≥ j − 1 for at

least some i ∈ {1, ..., j}.

We also know that π′T π̂. Then we must have that f(π′, πpk) ≤ f(π̂, πpk) for at least

some k ∈ {1, ..., j}. We know that f(π̂, πpk) = 1 for all k ∈ {1, ..., j}, which implies that

f(π′, πpk) ≤ 1 for at least some k ∈ {1, ..., j}.

Finally, we know that f(πpi , πpk) ≤ 2 for any i, k ∈ {1, ..., j}.

This creates the following violation of the triangle inequality: f(π′, πpk) ≤ 1, f(πpi , πpk) ≤

2, and f(π′, πpi) ≥ j − 1, where j ≥ 5. This is a contradiction.

Therefore, there can exist no π′ such that eTπ′ but π′T π̂. As a result, we can conclude

that π̂ covers e. Thus, e cannot be a member of the uncovered set. �
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This proof describes a method for constructing populations for which direct and rep-

resentative democracy yield different choices. These populations have a rather intuitive

interpretation. Let us think about a population constructed by the method above for the

case of n = 10. First, we note the distinction between the five “contested”issues ({a1, a2},

{a3, a4}, {a5, a6}, {a7, a8}, {a9, a10}) and the other 40 pairwise choices that are decided unan-

imously. The largest mass of voters, just under half of them, have the preference e. Let us

call these our “mainstream” voters. The remaining voters are divided evenly among five

smaller minority preferences. Each minority agrees with the mainstream preference on just

one of the contested issues; on the other hand, each minority group agrees with every other

minority group on three of the five contested issues. In this way, the minority preferences

are all more similar to one another than to the mainstream voters.

When voting directly over the alternatives, the population implements choices consistent

with e. Most of the choices are unanimous; and, for the five contested pairs, the mainstream

voters and one of the minority groups form a majority. Though the minority groups have

similar preferences, when voting issue-by-issue, they never vote all together on a contested

issue. As a result, the mainstream voters are able to implement their preferred choices.

We can contrast this with the dynamic under representative democracy. In this setting,

candidate e cannot be elected. Though e attracts the mainstream voters, there exist candi-

dates that all five minority groups prefer to e. Consider candidate π̂, who agrees with the

unanimous choices of the population but disagrees with the majority preference on the five

contested pairs. All five minority grouips prefer π̂ to e; together, they consist of a major-

ity of the population and can succeed in electing this compromise candidate. The choices

of the selected candidates in representative democracy are more closely aligned with the

minority preferences than the choices under direct democracy. The ability of the minority

groups to compromise under representative democracy produces choices that are different

than those implemented under direct democracy but that are preferred by more than half

the population.
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Table 1: Summary of Consistency Results
Strong Order Consistency Order Consistency

n = 3 + +
n = 4 − +

5 ≤ n ≤ 9 − ?
n > 10 − −

+ indicates a positive result for given n and property; - indicates a negative result

We summarize our results in Table 1, with + indicating a positive result and − indicating

a negative result. Order consistency results for 5 ≤ n ≤ 9 remain an open question. Our

strategy here focuses on generating populations by manipulating preferences over disjoint,

adjacent pairs. This approach has been fruitful in constructing populations for which order

consistency fails, though it may require more alternatives than might be necessary with other

approaches.

4 Related Work and Discussion

Our result is closely related to the work of Laffond and Lainé (2000). Laffond and Lainé

(2000) define a tournament consistency axiom that is very similar to our strong order con-

sistency property. Their tournament consistency requires that if majority preferences over

alternatives are consistent with an ordering, then the candidate with that ordering must

be the Condorcet winner of the tournament over candidates. They characterize the set of

preference extension rules (mappings from preferences over alternatives into preferences over

candidates) that satisfy tournament consistency. There are technical differences between the

two environments, including the impotant distinction that Laffond and Lainé (2000) require

this type of tournament consistency over any subset of alternatives; that is, if majority prefer-

ences over some subset of alternatives are consistent with an ordering, the candidate (defined

as an ordering over that subset) whose ordering is consistent with those preferences must be
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the Condorcet winner of the tournament of orderings restricted to that subset.8 But, the

more important conceptual difference is that we prove that for one particular and intuitive

way of defining preferences over candidates from preferences over alternatives, something

even weaker than strong order consistency (or tournament consistency) fails. Not only is the

candidate whose ordering is consistent with majority preferences not the Condorcet winner

of the tournament (what we call a failure of strong order consistency), that candidate may

not even be a member of the uncovered set of the tournament (a failure of order consistency).

Also related is the work of Lainé, Ozkes, and Sanver (working paper). In their frame-

work, preferences over alternatives are mapped into preferences over candidates (or hyper-

preferences) by a betweenness criterion: an individual with preference over alternatives π

prefers candidate π′ to candidate π′′ if the set of pairs that π and π′′ agree on is a subset

of the set of pairs π and π′ agree on. As they describe, the preference extension defined by

the Kemeny distance is a member of this family. They then define Kemeny-stability, a type

of consistency property for a social welfare function. They describe a social welfare function

as Kemeny-stable if a linear extension of the weak order selected by the social welfare func-

tion when applied to the population of preferences over alternatives is also selected by the

social welfare function when applied to the population of preferences over candidates (where

preferences over candidates are determined by the Kemeny distance). They show that many

popular social welfare functions are not Kemeny stable, including unanimous scoring rules,

the Copeland solution, the Slater solution, and the Kemeny rule. Their Kemeny-stability

consistency property is very close to our notion of order consistency. In relation to their

results, our paper could be interpreted as showing that the uncovered set fails a property

similar to Kemeny-stability.

While our model is quite different, our results echo the findings of Besley and Coate

8The other technical difference is that Laffond and Laine (2000) restrict the set of preference extension
rules (mappings from preferences over alternatives into preferences over candidates) they consider to those
rules that produce complete linear orders over candidates, explicitly disallowing indifference. We map pref-
erences over alternatives into preferences over candidates using the Kemeny distance, and we allow voters
to be indifferent over candidates whose orderings are equidistant from their own. In this way, the particular
mapping we study is not in their permissible class of preference extension rules.
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(2008), who study the question of whether citizens’ initiatives that allow citizens to cast

votes directly over issues improve upon the outcomes reached under electoral competition

among representatives. Their model consists of a two party political system, where the

population makes decisions in a two-dimensional policy space. Using this framework, they

show that the elected candidates may implement policies that are at odds with the majority

preferences of the population. They attribute these errors to the bundling of issues that is

inherent in the election of a representative. As in our model, when issues are decided upon

concurrently, via the choice of a representative, decisions may diverge from those made when

citizens are able to vote directly over issues, one at a time. Ahn and Oliveros (2012) prove a

similar result in the case where individuals’preferences over issues are not separable. They

work in a game-theoretic, cardinal environment, in which voters’preferences over bundles

of issues are determined by expected utility-maximization. They show that when voters’

preferences over the issues are not separable, then the voting strategies that result in the

election of the Condorcet winning bundle may not be an equilibrium of the model. Our

paper shows that, in a much simpler, ordinal environment, even in the case where there

are no complementarities or substitutabilities across issues, the bundling of choices may be

distortionary.

We have chosen to use the uncovered set as the solution concept for our tournaments.

How heavily does our result depend on this choice? One of the most attractive features of

the uncovered set is that many other popular tournament solution concepts are subsets of

the uncovered set (Laslier 1997). Therefore, it is possible to extend our negative result to

many other solution concepts. This includes the basic refinements of the uncovered set, the

iterated uncovered set and the minimal covering set. It also includes the Banks solution and

the Bipartisan set (Banks 1985, Laffond, Laslier, and Le Breton 1993) . Another well-studied

method for identifying tournament winners is ranking the members of the tournament based

upon their victories and losses within the tournament. The most popular of these ranking

methods include the Copeland solution, the Markov solution, and the Slater solution, each
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of which is also a refinement of the uncovered set (see, Copeland 1951, Daniels 1959, and

Slater 1961). In addition, Brandt, Geist, and Harrenstein (working paper) have shown that

any Pareto optimal method for selecting winners of the majoritarian tournament must be

a refinement of the uncovered set; thus, our negative result extends to every rule in that

family of tournament solutions as well. Thus, the comparably large size of the uncovered

set is quite an attractive property for our purposes. Furthermore, the uncovered set has the

appealing property that many models of strategic voting, not just sincere voting, lead to

selection of members of the uncovered set; for instance, Miller (1980) develops a model of

two-party electoral competition with strategic voting that leads to election of a member of

the uncovered set, and Shepsle and Weingast (1984) show that the amendment procedure

under strategic voting also elects a member of the uncovered set. Therefore, our negative

result would also extend to these specific models of sophisticated voting.

However, if we expanded our solution concept to the top cycle (Schwartz 1972), which

contains the uncovered set, we could prove a positive result.9

Proposition 4 For any population with majority preferences consistent with an ordering,

π∗, π∗ is a member of the top cycle of the tournament over orderings.

We can prove this using Proposition 1. Start with π∗. By performing one transposition

at a time, each time transposing a pair of alternatives that were ordered according to the

majority preference, we can construct a chain, π∗T λπiT λπjT λ...T λπ, from π∗ to any other

ordering π. Thus, we must have π∗ ∈ TC(T λ). �

But for populations like the one in our counterexample, the top cycle is large; it will

contain many other orderings, including our π̂. Thus, while order consistency would hold,

strong order consistency would fail: a candidate whose preferences are misaligned with the

majority preferences over at least some issues would be electable. The results of Laffond

9Lainé, Ozkes, and Sanver (Working paper) prove a stronger version of this proposition, showing that the
top cycle not only fails Kemeny-stability (similar in spirit to what we show here), but also fails their more
general hyper-stability property. See Theorem 6 in their paper.

18



and Lainé (2000) and Lainé , Ozkes, and Sanver (working paper) also highlight the more

general diffi culty of identifying forms of representative democracy that respect majority

preferences over alternatives. Laffond and Lainé (2000) show that only lexicographic pref-

erence extension rules (preference extension rules for mapping preferences over alternatives

into preferences), result in consistency between direct and representative democracy in their

environment; Lainé , Ozkes, and Sanver (working paper) show that when preferences over

candidates are defined by the Kemeny distance, many other familiar social welfare functions,

including unanimous scoring rules, result in inconsistencies between choices under direct and

representative democracies.

Our models operate on populations of strict preferences, however, the negative result

that we have identified can be derived in a more basic setting as well. Consider a population

of individuals who each had a yes/no preference on five different spending projects. We can

apply our same rule for mapping individuals’preferences over alternatives into preferences

over candidates. When deciding between two candidates, we assume that an individual votes

for the candidate with whom she agrees on the greatest number of issues. In a population

similar to that described in the proof of Theorem 1, the majority preference would be to

vote yes on each of these five issues separately, but under representative democracy, the

population would never elect the candidate who would vote yes on all five issues.

This example shows that our result does not depend on our assumption that voters’

preferences take the form of orderings. What is important for our result is the existence

of multiple issues. Under a direct democracy, voters express preferences over issues one

at a time. Therefore, voters who may be very similar with respect to their decisions over

the entire set of issues - they would agree most of the time - can end up voting differently

on any one particular issue. But in a representative democracy, voters are able to express

preferences over the entire set of issues by voting for a candidate. In this way, representative

democracy can serve to unite and empower groups of voters with similar, but not identical

preferences.
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5 Appendix

5.1 Proof for n=4

In this section, we prove Proposition 3 stated in Section 3.2. For n = 4, UC(T λ) satisfies

order consistency.

Proof: Assume majority preferences are consistent with e. We show that there is no

ordering that can cover e. The key step is to recognize that we can apply Proposition 1

to rule out any ordering fewer than 5 transpositions from e: eT λπ for any π within two

transpositions, so they cannot cover e, and for those three or four transpositions away, even

if they beat e, they will be defeated by at least one ordering one or two transpositions

from e (which e beats). So, the only orderings that could potentially cover e are five or six

transpositions away from e: {a4a3a1a2, a4a2a3a1, a3a4a2a1, a4a3a2a1}. We rule these out one

at a time:

—We cannot have a4a3a1a2 covers e, since eT λa2a3a1a4T
λa4a3a1a2 for any population

with majority preferences consistent with e. Proposition 1 proves eT λa2a3a1a4. We cannot

have a4a3a1a2T
λa2a3a1a4 since all of the orderings closer or equidistant to a4a3a1a2 than

a2a3a1a4 have a4 precedes a2. Thus, if more than half the population were closer to or

equidistant to a4a3a1a2, we would not have a2 � a4 in the majority preference.

—We cannot have a4a2a3a1 covers e, since we must have eT λa4a2a3a1. All of the orderings

closer or equidistant to a4a3a1a2 than e have a4 precedes a1. Thus, if more than half the

population were closer to or equidistant to a4a2a3a1 than to e, we would not have a1 � a4

in the majority preference.

—We cannot have a3a4a2a1 covers e, since eT λa1a4a2a3T
λ a3a4a2a1 for any population

with majority preferences consistent with e.Proposition 1 proves eT λa1a4a2a3. We cannot

have a3a4a2a1T
λa1a4a2a3 since all of the orderings closer or equidistant to a1a4a2a3 than

a3a4a2a1 have a3 precedes a1. Thus, if more than half the population were closer to or

equidistant to a3a4a2a1, we would not have a1 � a3 in the majority preference.
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—We cannot have a4a3a2a1 covers e, since eT λa1a3a2a4T
λa4a3a2a1 for any population

with majority preferences consistent with e. Proposition 1 proves eT λa1a3a2a4. We cannot

have a4a3a2a1T
λa1a3a2a4 since all of the orderings closer or equidistant to a4a3a2a1 than

a1a3a2a4 have a4 precedes a1. Thus, if more than half the population were closer to or

equidistant to a4a3a2a1, we would not have a1 � a4 in the majority preference. �

5.2 Population Restrictions

A natural question to ask in this context is whether we can impose restrictions on the

distribution of preferences that would guarantee order consistency. This domain restriction

approach has been adopted by many social choice theorists in attempts to rule out other

paradoxical outcomes; perhaps most classic is the single-peakedness restriction pioneered

independently by Black (1948) and Arrow (1951) and generalized by Sen and Pattanaik

(1969). Their goal was to describe a class of populations for which majority rule over

alternatives would not cycle. The domain restriction they proposed requires populations

to be unimodal in the sense that all members of the population, for any particular triple of

alternatives, must be able to agree on an alternative that is not worst. Assuming the number

of voters is odd, this condition is suffi cient for transitive majority rule.

Clearly, this restriction will not be enough to assure order consistency, as the class of

populations we consider in our counterexample above are indeed single-peaked in terms of

preferences over alternatives. However, we can use a similar idea, that of restricting the

number of modes in the distribution, in order to derive a suffi cient condition for order con-

sistency in our framework. The class of populations with transitive majority rule consistent

with the ordering e can be thought of as having a “peak” or cluster of weight around e.

Our suffi ciency condition says that as we move away from e, we must not encounter another

cluster of orderings similar to one another. In order to state this condition more formally,

it will be useful to introduce some new terminology. When referring to a population with

transitive majority rule consistent with e, we will call any pairwise disagreement with e an
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error. For example, we will say that an ordering π that is m transpositions from e contains

m errors. We can state our suffi ciency condition in terms of these errors.

Proposition 5 Consider the class of populations with transitive majority rule consistent

with e. Then, order consistency holds if for any set of m errors, m = 5, we have

∑
λ(π|π contains at least 1

2
of these m errors) <

1

2

Proof. Suppose e /∈UC(T λ). We will show there must exist a set of m errors, m = 5, such

that
∑

λ(π|π contains at least 1
2
of these m errors) > 1

2
. Since e /∈UC(T λ), we know there

exists π̂ such that π̂ covers e. Let π̂ contain m errors; we know m = 5 in order for π̂ to cover

e. Since π̂ and e agree on all pairwise choices outside of the m errors, we know that f(π, π̂)

and f(π, e) are determined only by how many of the m errors π contains. Those π that have

less than 1
2
of the m errors have f(π, e) < f(π, π̂). So, suppose the set of orderings that had

at least 1
2
of these m errors in common with π̂ had mass less than 1

2
. Then, we would have∑

λ(π|f(π, e) < f(π, π̂) > 1
2
. This would imply eT λπ̂, contradicting π̂ covers e.

This suffi ciency condition has a straightforward intuition. If we encounter a population

that contains a mass of orderings that are both (a) relatively distant from e, and (b) relatively

close to one another, then we may have the type of counterexample presented above. This

type of cluster of similar orderings far from e may be able to agree upon a compromise

candidate which covers e, but only if together they constitute a majority. The condition

rules out this possibility by assuring that no such cluster of mass greater than 1
2
exists.

This is a suffi cient but not necessary condition for order consistency. A gray area exists

between the class of populations described in our counterexample above and the class of

populations described by this suffi ciency condition. For some populations that fail the con-

dition above, the distribution of mass on orderings far from e may be too dispersed to agree

upon an ordering like π̂ which could beat everything that e beats. One might ask whether
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we could improve the suffi ciency condition by restricting this set of distant orderings to fall

within a certain radius of one another. Below, we provide an example that illustrates why

this strategy fails.

Example 1 Why Tightening the Suffi ciency Condition by Restricting the Radius of the Out-

lier Orderings Does Not Work

Consider the following population, a slight variant from the example presented in Section

3:

π λ(π)

e 1
2
− 2ε

a1a2a4a3a6a5a8a7a10a9
1
5
(1

2
− ε)

a2a1a3a4a6a5a8a7a10a9
1
5
(1

2
− ε)

a2a1a4a3a5a6a8a7a10a9
1
5
(1

2
− ε)

a2a1a4a3a6a5a7a8a10a9
1
5
(1

2
− ε)

a2a1a4a3a6a5a8a7a9a10
1
5
(1

2
− ε)

a10a9a8a7a6a5a4a3a2a1 3ε

Using the strategy from the proof above, we can show that π̂ = a2a1a4a3a6a5a8a7a10a9

covers e, the ordering consistent with majority preferences. We need to show that (a)

π̂T λe and (b) for all π′ ∈ Π, eT λπ′ ⇒ π̂T λπ′. First we will show that π̂T λe. For the five

orderings in population with weight 1
5
(1

2
− ε), we have f(π, π̂) = 1 and f(π, e) = 4. And,

we know a10a9a8a7a6a5a4a3a2a1 is closer to π̂ than e, since it is maximally distant from

e. Thus, 1
2

+ 2ε of the population is closer to π̂ than e, so π̂T λe. Now we need to show

there cannot exist π′ such that eT λπ′ but π′T λπ̂. Suppose there did exist such a π′. Then,

eT λπ′ implies that for at least one of the orderings π in population other than e, f(e, π) ≤

f(π′, π). We know there cannot exist a π′, π′ 6= e, such that f(e, a10a9a8a7a6a5a4a3a2a1) ≤

f(π′, a10a9a8a7a6a5a4a3a2a1). So, it must be that this is true for one of the remaining five
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orderings. Since for any of these orderings f(e, π) = 4, we must have f(π′, π) ≥ 4 for at

least one of those five orderings π. And, the fact that π′T λπ̂ implies that we have at least

one of the following two cases:

1. For at least one of the orderings with weight 1
5
(1

2
− ε), we have f(π′, π) ≤ f(π̂, π).

2. For both e and a10a9a8a7a6a5a4a3a2a1, we have f(π′, π) < f(π̂, π).

For case 1, we know f(π̂, π) = 1, so this would imply, f(π′, π) ≤ 1 for one of the orderings

with weight 1
5
(1

2
− ε). This leads to the same violation of the triangle inequality that we

reached above, since for any two orderings with weight 1
5
(1

2
− ε), we have f(πi, πj) ≤ 2.

For case 2, f(π′, e) < f(π̂, e) implies f(π′, e) < 5. And, f(π′, a10a9a8a7a6a5a4a3a2a1) <

f(π̂, a10a9a8a7a6a5a4a3a2a1) implies f(π′, a10a9a8a7a6a5a4a3a2a1) < 40. But, f(π′, e) < 5 and

f(π′, a10a9a8a7a6a5a4a3a2a1) < 40 cannot both hold, since the first implies π′ has fewer than

five errors and the second implies it has more than 5 errors. This leads to a contradiction.

Thus, order consistency fails for this population.

This example illustrates the diffi culty we encounter if we attempt to tighten the suffi ciency

condition for ordering consistency by imposing a radius around the orderings with common

errors. Taking the basic counterexample from above, where the minority orderings all lie

relatively close to another, we can move some weight to a10a9a8a7a6a5a4a3a2a1 and still arrive

at π̂ covers e. Thus, it is not always true that we need the minority orderings to be relatively

close to one another in order to have order consistency fail.
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